[1]王文英, 王慧,曲世永.相变诱导塑性钢TRIP590的烘烤硬化特性 [J].金属热处理,2020,45(8):43-46.
Wang W Y, Wang H, Qu S Y. Bake hardening behavior of transformation induced plasticity steel TRIP590 [J]. Heat Treatment of Metals, 2020, 45(8):43-46.
[2]董丹阳, 刘杨,王磊,等. 应变速率对DP780钢动态拉伸变形行为的影响 [J]. 金属学报, 2013, 49(2):159-166.
Dong D Y, Liu Y, Wang L, et al. Effect of strain rate on dynamic deformation behavior of DP780 steel [J]. Acta Metallurgica Sinica, 2013, 49(2):159-166.
[3]张伟, 李春光,韩赟,等. 高强双相钢动态力学本构模型对比分析 [J]. 塑性工程学报,2021,28(6):75-82.
Zhang W, Li C G, Han Y, et al. Comparative analysis of dynamic mechanical constitutive model of high strength dual phase steel [J]. Journal of Plasticity Engineering, 2021, 28(6):75-82.
[4]张赛, 孟庆振, 谢书港,等. B250P1低合金钢的动态力学行为及其本构模型 [J]. 理化检验-物理分册, 2016, 52(6):370-374.
Zhang S, Meng Q Z, Xie S G, et al. Dynamic mechanical behavior and constitutive model of B250P1 low alloy steel [J]. Physical Testing and Chemical Analysis Part A: Physical Testing, 2016, 52(6):370-374.
[5]黄东英, 徐亮, 刘晓红. 冲击载荷下中碳低合金钢的动态力学性能与J-C本构模型的改进 [J]. 锻压技术, 2021,46 (11): 225-230.
Huang D Y, Xu L, Liu X H. Dynamic mechanical properties of medium carbon low alloy steel and improvement of J-C constitutive model under impact load [J]. Forging & Stamping Technology, 2021,46 (11): 225-230.
[6]熊自柳, 吝章国, 孙力,等. 汽车用高强度钢板的动态变形行为 [J]. 机械工程材料, 2018, 42(8):18-23,36.
Xiong Z L, Lin Z G, Sun L, et al. Dynamic deformation behaviour of high strength steel sheet for automotive [J]. Materials for Mechanical Engineering, 2018, 42(8):18-23,36.
[7]Nieto-fuentes J C, Rittel D, Osovski S. On a dislocation-based constitutive model and dynamic thermomechanical considerations [J]. International Journal of Plasticity, 2018,(8): 601-615.
[8]赵清江, 郭怡晖, 梁宾,等. 22MnB5高强度钢板材的断裂失效准则研究 [J]. 塑性工程学报, 2020, 27(4): 132-137.
Zhang Q J, Guo Y H, Liang B, et al. Research on fracture criterion of 22MnB5 high-strength steel plate [J]. Journal of Plasticity Engineering, 2020, 27(4): 132-137.
[9]韩蒙, 李迪, 孙彩凤,等. 基于修正GTN模型的双相钢断裂失效判据研究 [J]. 塑性工程学报, 2020, 27(1): 117-122.
Han M, Li D, Sun C F, et al. Study on fracture failure criterion of dual phase steel based on modified GTN model [J]. Journal of Plasticity Engineering, 2020, 27(1): 117-122.
[10]GB/T 228.1—2021, 金属材料拉伸试验第1部分:室温试验方法 [S].
GB/T 228.1—2021, Metallic material—Tensile testing—Part 1: Method of test at room temperature [S].
[11]GB/T 30069.2—2016,金属材料高应变速率拉伸试验第2部分:液压伺服型与其他类型试验系统 [S].
GB/T 30069.2—2016, Metallic material—Tensile testing at high strain rates—Part 2: Servo-hydraulic and other test systems [S].
[12]徐梅, 米振莉, 李辉,等. 基于位错密度理论的超高强双相钢DP1000热变形本构模型 [J]. 材料研究学报, 2017, 32(8):576-584.
Xu M, Mi Z L, Li H, et al. Constitutive model based on dislocation density theory for hot deformation behavior of ultra-high strength dual phase steel DP1000 [J]. Chinese Journal of Materials Research, 2017, 32(8):576-584.
[13]高永亮, 胡士廉, 陈巍,等. 高应变速率拉伸条件下TWIP钢动态力学性能与组织演变规律的研究 [J]. 热加工工艺, 2019, 48(16):56-60.
Gao Y L, Hu S L, Chen W, et al. Research on dynamic mechanical behavior and microstructure evolution rule of TWIP steel under high strain rate tensile condition [J]. Hot Working Technology, 2019, 48(16):56-60.
[14]许伟, 方刚, 张钧萍,等. 面向汽车碰撞安全的热成形钢断裂失效表征与验证 [J]. 塑性工程学报, 2020, 27(6): 121-128.
Xu W,Fang G, Zhang J P, et al. Fracture failure characterization and verification of hot forming steel for vehicle crash safety [J]. Journal of Plasticity Engineering, 2020, 27(6):121-128.
[15]伍星星, 刘建湖, 孟利平, 等. 金属材料试件在压缩,扭转,拉伸断裂过程中的应力状态变化及表征 [J]. 高压物理学报, 2020, 34(5):143-152.
Wu X X, Liu J H, Meng L P, et al. Variation of stress distribution in metal fracture process under compressive, torsional, and tensile loading [J]. Chinese Journal of High Pressure Physics, 2020, 34(5):143-152.
[16]罗玉梅, 王博, 李伟. 基于落锤压溃高强双相钢断裂失效模型 [J]. 塑性工程学报, 2021, 28(9):200-206.
Luo Y M, Wang B, Li W. Fracture failure model of high-strength dual-phase steel based on falling weight collapse [J]. Journal of Plasticity Engineering, 2021, 28(9):200-206.
[17]冯悦, 肖守讷, 朱涛,等. 考虑材料失效准则的吸能装置失效行为与碰撞特性 [J]. 中南大学学报:自然科学版, 2019, 50(2):487-496.
Feng Y, Xiao S N, Zhu T, et al. Failure behavior and collision characteristics of energy-absorbing structures considering material failure criteria [J]. Journal of Central South University: Science and Technology, 2019, 50(2):487-496.
|