网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
环形蒙皮零件的被动式充液成形技术
英文标题:Passive hydroforming technology for ring-shaped skin parts
作者:李奎 刘波 邱超斌 鲁帆 
单位:航空工业西安飞机工业集团有限责任公司 
关键词:充液成形 液体压力 起皱 环形蒙皮 应力状态 
分类号:TG39
出版年,卷(期):页码:2022,47(3):103-108
摘要:

 为解决大尺寸复杂曲度蒙皮类零件成形过程中产生的起皱及回弹现象,针对环形蒙皮类零件开展被动式充液成形技术的研究。通过有限元分析发现,液体压力可以显著改变唇口外侧的应力状态,对悬空区的起皱现象的抑制效果明显,在最大液体压力达到4 MPa时,环形蒙皮外侧无起皱现象。液体压力较小时,径向、周向应力达到峰值时,零件起皱高度最大,在一定压力范围内随着压力的增加,环形蒙皮外侧的周向、径向应力趋于固定值,使得唇口零件外侧处于拉-拉的应力状态条件,更有利于零件的成形。同时,随着压力的增加,板料内、外侧位移的绝对值逐渐减小,直至趋于固定值,液体压力可有效抑制板料与凸模的相对滑动,使得环形蒙皮零件的内、外侧板料的流动更加均匀。

 In order to solve the wrinkling and springback phenomenon generated in the forming process of large-scale complex curvature skin parts, the passive hydroforming technology for ring-shaped skin parts was studied. The finite element analysis shows that the liquid pressure can significantly change the stress state on the outside of lip, and the suppression effect on the wrinkling phenomenon in the suspended area is obvious. When the maximum liquid pressure reaches 4 MPa, there is no wrinkling phenomenon on the outside of ring-shaped skin part. However, when the liquid pressure is low, the wrinkle height of part is the highest when the radial and circumferential stresses reach the peak values, and the circumferential and radial stresses on the outside of ring-shaped skin part tend to a fixed value with the increasing of the pressure within a certain pressure range, which makes the outside of lip part in the  tension-tension stress condition and is more conducive to the forming of part. At the same time, with the increasing of pressure, the absolute values of inner and outer displacements of sheet metal gradually decrease until they tend to a fixed value. Thus, the liquid pressure can effectively restrain the relative sliding between sheet metal and punch, which makes the flow of inner and outer sheet materials for ring-shaped skin parts more uniform.

基金项目:
作者简介:
作者简介:李奎(1989-),男,硕士,工程师 E-mail:615804786@qq.com
参考文献:

 [1]郎利辉, 谢亚苏,王永铭. 飞机大型复杂双曲度蒙皮充液成形数值模拟及实验研究[J]. 精密成形工程, 20113(6): 112-116.


 


Lang L H, Xie Y S, Wang Y M . Aircraft large complex double curvature skin hydroforming numerical simulation and experiment research[J]. Journal of Netshape Forming Engineering, 20113(6): 112-116.


 


[2]谢洪志, 王玲,赵天章,. 基于数字化的蒙皮拉形加载轨迹优化与应用[J]. 锻压技术,2021,46(1):56-59.


 


Xie H ZWang LZhao T Zet al. Optimization and application of loading trajectory in stretch forming of skin based on digital [J]. Forging & Stamping Technology2021,46(1):56-59.


 


[3]朗利辉, Danckert J, Nielsen K B,等. 板液压成形及无模充流拉深技术[J]. 塑性工程学报, 2002(4):29-34.


 


Lang L H, Danckert J, Nielsen K B, et al. About sheet hydroforming and hydromechanical deep drawing without draw die[J]. Journal of Plasticity Engineering,2002(4):29-34.


 


[4]Lang L H, Danckert J, Nielsen K B . Investigation into the effect of pre-bulging during hydromechanical deep drawing with uniform pressure onto the blank[J]. International Journal of Machine Tools & Manufacture, 2003, 44(6):649-657.


 


[5]Siegert K, Hussermann M, Lsch B, et al. Recent developments in hydroforming technology[J]. Journal of Materials Processing Technology, 2000, 98(2):251-258.


 


[6]Meng B, Wan M, Yuan S, et al. Influence of cavity pressure on hydrodynamic deep drawing of aluminum alloy rectangular box with wide flange[J]. International Journal of Mechanical Sciences, 2013, 77:217-226.


 


[7]Lang L H, Wang Y M, Xie Y S, et al. Pre-bulging effect during sheet hydroforming process of aluminum alloy box with unequal height and flat bottom[J]. Transactions of Nonferrous Metals Society of China, 201222S2):302-308.


 


[8]Green D E, Angara T S, Nurcheshmeh M, et al. A practical method to evaluate the forming severity of tubular hydroformed parts[J]. The International Journal of Advanced Manufacturing Technology, 2012, 62(9-12):965-980.


 


[9]房涛涛, 李晓星,郎利辉. 大厚度双曲度铝合金飞机蒙皮拉伸成形工艺优化[J]. 锻压技术,2021,46(1):29-3642.


 


Fang T TLi X XLang L H. Optimization on stretch forming process for hyperbolic aluminum alloy aircraft skin with large thickness[J]. Forging & Stamping Technology2021,46(1):29-3642.


 


[10]杨踊, 孙淑铎,刘慧茹,等. 航空发动机复杂型面罩子钣充液成形技术[J]. 航空制造技术, 2010(1):91-94,99.


 


Yang Y, Sun S D, Liu H R, et al. Hydro forming technology of complex profile cover sheet of aeroengine[J]. Aeronautical Manufacturing Technology, 2010, (1):91-94,99.


 


[11]曾一畔, 董锦亮,宋炳毅,等. 飞机复杂曲面蒙皮零件充液拉深技术研究[J]. 精密成形工程, 2019, 11(3):59-65.


 


Zeng Y P, Dong J L, Song B Y, et al. Hydrodynamic deep drawing for complex curved skin part of aircraft[J]. Journal of Netshape Forming Engineering,2019, 11(3):59-65.


 


[12]Hashemi A, Hoseinpour Gollo M, Seyedkashi S M H.Process window diagram of conical cups in hydrodynamic deep drawing assisted by radial pressure[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(9):3064-3071.


 


[13]Meng B, Wan M, Wu X D, et al. Inner wrinkling control in hydrodynamic deep drawing of an irregular surface part using drawbeads[J]. Chinese Journal of Aeronautics, 2014, 27(3):697-707.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9