网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
2219铝合金曲面件局部热翻边成形性能
英文标题:Formability of 2219 aluminum alloy curved components in local warm flanging
作者:陈军龙1 凡晓波1 乔科1 苑世剑1 2 
单位:1.大连理工大学 机械工程学院 2.哈尔滨工业大学 材料科学与工程学院 
关键词:整体结构 2219铝合金 热翻边成形 时效温度 大型薄壁曲面件 
分类号:TG386
出版年,卷(期):页码:2023,48(5):39-43
摘要:

 针对超低温成形整体箱底局部翻边成形时易开裂的难题,提出时效温度热翻边成形工艺路线。采用单向拉伸试验测试了超低温预变形后2219铝合金的热态力学性能;通过工艺试验和数值模拟阐明了时效温度热翻边成形规律。研究发现:超低温预变形试件在时效温度下的伸长率显著增加,由常温时的19.5%提高至31.3%;在时效温度下,实现了直径为Φ100 mm的孔的翻边,平均翻边高度为7.5 mm;从圆角到直壁截面壁厚逐渐减小,最大减薄率为18.4%。研究成果成功应用于超低温成形的2 m级火箭整体箱底的局部翻边成形,为整体结构局部特征成形提供了技术支撑和指导。

 For the problem of easy cracking when local flanging of integral box bottom formed at ultra-low temperature, a process route of warm flanging at aging temperature was proposed, and the thermal mechanical properties of 2219 aluminum alloy after ultra-low temperature pre-deformation were tested by uniaxial tensile test. Furthermore, the forming law of warn flanging at aging temperature was elucidated by process tests and numerical simulations. The research find that the elongation of ultra-low temperature pre-deformed specimens significantly increase at aging temperature, from 19.5% at room temperature to 31.3%. At aging temperature, the flanging of holes with a diameter of Φ100 mm is realized, and the average flanging height is 7.5 mm. The wall thickness of  section gradually decreases from the rounded corner to the straight walls, and the maximum thinning rate is 18.4%. Thus, the research results have been successfully applied to the ultra-low temperature forming of local flanging for the overall box bottom of 2 m-class rocket, providing technical support and guidance for the local feature forming of integral structure.

基金项目:
国家重点研发计划项目(2019YFA0708804)
作者简介:
作者简介:陈军龙(1996-),男,硕士研究生,E-mail:Chen_jl0822@163.com;通信作者:凡晓波(1987-),男,博士,副研究员,E-mail:xbfan@dlut.edu.cn
参考文献:

[1] 刘欣,王国庆,李曙光,.重型运载火箭关键制造技术发展展望[J]. 航天制造技术,2013,177 (1):1-6.


Liu X, Wang G Q, Li S G, et al. Forecasts on crucial manufacturing technology development of heavy lift launch vehicle[J] . Aerospace Manufacturing Technology, 2013,177 (1): 1-6.


[2] Yuan S J, Fan X B. Developments and perspectives on the precision forming processes for ultra-large size integrated components[J]. International Journal of Extreme Manufacturing, 2019,12: 33-51.


[3] Li D M, Ghosh A. Tensile deformation behavior of aluminum alloys at warm forming temperatures[J]. Materials Science and Engineering: A, 2003,3521-2: 279-286.


[4] 周国伟,李大永,彭颖红.7075-T6高强度铝合金温热条件下的拉深成形性能[J]. 上海交通大学学报,2012,46 (9):1482-1486.


Zhou G W, Li D Y, Peng Y H. Deep drawability of 7075-T6 high strength aluminum alloy at warm condition[J]. Journal of Shanghai Jiaotong University, 2012,46 (9): 1482-1486.


[5] 刘合军,郎利辉,李涛.铝合金板材温热成形性能[J]. 塑性工程学报,2009,16(3):145-148181.


Liu H J, Lang L H, Li T. Investigation of formability of aluminum alloy sheet at elevated temperature[J]. Journal of Plastic Engineering, 2009,16 (3): 145-148181.


[6] Lin Y C, Chen X M. A critical review of experimental results and constitutive descriptions for metals and alloys in hot working[J]. Materials & Design, 2011,324: 1733-1759.


[7] Bolt P J, Lamboo N A P M, Rozier P J C M. Feasibility of warm drawing of aluminium products[J]. Journal of Materials Processing Technology, 2001,1151: 118-121.


[8] 李翔,唐建国,张新明,.温变形对汽车车身用6061铝合金自然时效及力学性能的影响[J]. 中国有色金属学报,2016,26 (1):1-6.


Li X, Tang J G, Zhang X M, et al. Effect of warm deformation on natural ageing and mechanical properties of aluminum alloy 6061 sheets for automotive body[J]. The Chinese Journal of Nonferrous Metals, 2016,26 (1): 1-6.


[9] Toros S, Ozturk F,Kacar I. Review of warm forming of aluminum-magnesium alloys[J]. Journal of Materials Processing Technology, 2008, 2071-3: 1-12.


[10] 张下陆,郭慧,赵鸿飞,.淬火态2219铝合金板材加热翻边工艺[J]. 锻压技术,2021,46(10):136-140.


Zhang X L, Guo H, Zhao H F, et al. Heating flanging process for quenched state 2219 aluminum alloy sheets[J]. Forging & Stamping Technology, 2021,46 (10): 136-140.


[11] 龚集响,杨勇,范华明,.硬态贮箱整底翻孔成形试验研究[J]. 航天制造技术,2022,231(1):11-15.


Gong J X, Yang Y, Fan H M, et al. Experimental research on the forming of flanging hole at whole bottom of hard tank[J]. Aerospace Manufacturing Technology, 2022,231 (1): 11-15.


[12] Fan X B, Yuan S J. Innovation for forming aluminum alloy thin shells at ultra-low temperature by the dual enhancement effect[J]. International Journal of Extreme Manufacturing, 2022,4(3): 1-5.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9