网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
泡沫铝夹芯板预制坯热变形行为
英文标题:Thermal deformation behavior on aluminium foam sandwich preformed blank
作者:徐文斌1 胡志力1 2 3 庞秋4 
单位:1.湖北隆中实验室  2.武汉理工大学 现代汽车零部件技术湖北省重点实验室  3.武汉理工大学 湖北省材料绿色精密成形工程技术研究中心  4.武汉东湖学院 机电工程学院 
关键词:泡沫铝夹芯板预制坯 搅拌摩擦焊 粉末分布 热变形行为 成形性能 
分类号:TB34
出版年,卷(期):页码:2023,48(5):44-50
摘要:

 采用搅拌摩擦焊工艺制备泡沫铝夹芯板预制坯,研究其热变形行为。结果发现:当焊接速度为2000 r·min-1、焊接进给速度为50 mm·min-1、轴肩下压量为0.15 mm时,可以形成粉末混合均匀、致密性良好的泡沫铝夹芯板预制坯。在350~475 ℃的变形温度和0.01~1 s-1的变形速率范围内,随着变形温度上升,泡沫铝夹芯板预制坯的伸长率先升高后下降,于400 ℃时达到最高,而峰值应力随着变形温度的上升而降低;随着变形速率提高,泡沫铝夹芯板预制坯的伸长率持续下降,而峰值应力上升。在350~475 ℃变形温度范围内,建立了描述泡沫铝夹芯板预制坯热变形行为的Fields-Backofen模型。研究成果为泡沫铝夹芯板复杂曲面构件的制备及应用提供了理论和技术基础。

 The aluminum foam sandwich preformed blank was produced by friction stir welding process, and its thermal deformation behavior was studied. The results find that when the welding speed is 2000 r·min-1, the welding feed rate is 50 mm·min-1 and the pressing down of shoulder is 0.15 mm, aluminum foam sandwich preformed blank with uniform powder mix and good denseness can be formed. In the deformation temperature range of 350-475 ℃ and the deformation rate range of 0.01-1 s-1, as the deformation temperature rises, the elongation of aluminum foam sandwich preformed blank increases first and then decreases, reaching the highest at 400 ℃, and the peak stress decreases with the increasing of deformation temperature. As the deformation rate increases, the elongation of aluminum foam sandwich preformed blank continues to decrease, while the peak stress increases. In the deformation temperature range of 350-475 ℃, a Fields-Backofen model is established to describe the thermal deformation behavior of aluminum foam sandwich preformed blank, which provides a theoretical and technical basis for the preparation and application of aluminum foam sandwich components with complex curved surfaces.

基金项目:
湖北隆中实验室自主创新研究项目(2022ZZ-04);湖北省自然科学基金资助项目(2021CFB523);湖北省重点研发计划项目(2021BAA200);湖北省科技重大项目(2022AAA001)
作者简介:
作者简介:徐文斌(1997-),男,硕士研究生 ,E-mail:634269813@qq.com;通信作者:庞秋(1979-),女,博士,硕士生导师,副教授,E-mail:pqiuhit@126.com
参考文献:

[1] Patel P, Bhingole P P, Makwaba D. Manufacturing, characterization and applications of lightweight metallic foams for structural applications: Review[J]. Materials Today: Proceedings, 2018, 5(9): 20391-20402.


[2] Xu F X, Zhang X, Zhang H. A review on functionally graded structures and materials for energy absorption[J]. Engineering Structures, 2018, 171: 309-325.


[3] Bakir M, Bahceci E, Meyer J L, et al. Aromatic thermosetting copolyester foam core and aluminum foam face three-layer sandwich composite for impact energy absorption[J]. Materials Letters, 2017, 196: 288-291.


[4] Kweon J H, Jung J W, Kim T H, et al. Failure of carbon composite-to-aluminum joints with combined mechanical fastening and adhesive bonding[J]. Composite Structures, 2006, 75(1-4): 192-198.


[5]宋宇峰,肖来荣,曾德露,等.泡沫铝三明治结构材料的制备及其组织性能分析[J].矿冶工程,201434(3)119-123.


Song Y F, Xiao L R, Zeng D L, et al. Preparation and structure property analysis of aluminum foam sandwich structure material[J]. Mining and Metallugical Engineeing, 2014, 34(3): 119-123.


[6] Banhart J. Light-metal foams-history of innovation and technological challenges[J]. Advanced Engineering Materials, 2013, 15(3): 82-111.


[7] Ma Z Y. Friction stir processing technology: A review[J]. Metallurgical and Materials Transactions A, 2008, 39 (3): 642-658.


[8] Hangai Y, Utsunomiya T. Fabrication of porous aluminum by friction stir processing[J]. Metallurgical and Materials Transactions A, 2009, 40 (2): 275-277.


[9] Utsunomiya T, Ishii N, Hangai Y, et al. Manufacturing of sandwich panel with porous aluminum/dense steel plate by friction stir processing route[J]. Transactions of the Japan Society of Mechanical Engineers, 2011, 77(779): 1013-1016.


[10] Su X X, Huang P, Feng Z H, et al. Study on aluminum foam sandwich welding by friction stir welding technology[J]. Materials Letters, 2021, 304: 130605


[11]吴正健,庞秋,胡志力.搅拌摩擦焊制备7075铝合金泡沫夹芯板塑性变形及发泡工艺研究[J].精密成形工程,202214(4)69-77.


Wu Z J, Pang Q, Hu Z L. Plastic deformation and foaming process of 7075 aluminum alloy foam sandwich plate prepared by friction stir welding[J]. Journal of Netshape Forming Engineering, 2022, 14(4): 69-77.


[12]万心勇. 2024/7075异质铝合金车身构件拼焊成形组织性能与变形规律[D].武汉:武汉理工大学,2019.


Wan X Y. Research on Microstructure and Deformation Behavior of 2024/7075 Dissimilar Aluminum Alloy FSW-TWB for Vehicle Body [D]. WuhanWuhan University of Technology, 2019.


[13]宋锦书,金恋.工艺参数对搅拌摩擦焊制备泡沫铝的影响规律研究[J].热加工工艺,2022,51(5):27-31.


Song J S, Jin L. Effect of process parameters on aluminum foam prepared by friction stir welding[J]. Hot Working Technology, 2022, 51(5):27-31.


[14] Khodashenas H, Mirzadeh H, Malekan M, et al. Constitutive modeling of flow stress during hot deformation of Sn-Al-Zn-Cu-Mg multi-principal-element alloy[J]. Vacuum, 2019170:108970.


[15] He Z B, Wang Z B, Lin Y L, et al. Hot deformation behavior of a 2024 aluminum alloy sheet and its modeling by Fields-Backofen model considering strain rate evolution[J]. Metals, 2019, 9(2):243.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9