网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
带长直段小弯曲半径管可控内压推弯研究
英文标题:Research on controllable internal pressure push bending for tube with long straight section and small bending radius
作者:徐勇1 2 贺腾飞1 解文龙2 张士宏2 黄新越3 王晟诚3 
单位:1. 华北理工大学 冶金与能源学院 2. 中国科学院金属研究所 师昌绪先进材料创新中心  3. 沈阳多元机电设备有限公司 
关键词:聚氨酯 小弯曲半径 推弯 可控内压 反推力 
分类号:TG376
出版年,卷(期):页码:2023,48(5):87-94
摘要:

 针对带长直段小弯曲半径管在推弯成形时极易产生的失稳起皱和横截面畸变等缺陷,采用聚氨酯内胀冷推弯成形了规格为Φ25 mm×1 mm、弯曲半径为1D的5B02铝合金管材,并采用有限元模拟研究了推弯过程中聚氨酯内压力分布。通过分析反推力、聚氨酯参数、内摩擦获取了聚氨酯内压力分布情况,确定了内压力与缺陷之间的关系,实现了可控内压。研究结果表明:当反推力增大至13 MPa时,管材成形不足; 反推力减小为5 MPa时,支撑弯管的内压力不足,弯管产生失稳塌陷与端口畸变。当聚氨酯硬度不足时,会加剧弯管横截面畸变。聚氨酯与管之间的摩擦因数的改变会影响聚氨酯所提供的内压力,摩擦因数小时会导致成形不足从而引起管材失稳起皱。通过以上研究验证了可控内压推弯的可行性。

 In view of the defects such as instability, wrinkling and cross-sectional distortion that were easily produced during push-bending of tubes with long straight section and small bending radius, 5B02 aluminum alloy tubes with the specification of Φ25 mm×1 mm and the bending radius of 1D were formed by internal expansion and cold push-bending process with polyurethane filler, and the internal pressure distribution of polyurethane filler during the push-bending process was studied by finite element simulation. Then, by analyzing reverse thrust, polyurethane filler parameters and internal friction, the internal pressure distribution of polyurethane filler was obtained, and the relationship between internal pressure and defects was determined to realize the controllable internal pressure. The research results show that when the reverse thrust is increased to 13 MPa, the tube is not well formed. When the reverse thrust is reduced to 5 MPa, the internal pressure of supporting elbow is insufficient, resulting in instability and port distortion of elbow. When the hardness of polyurethane filler is insufficient, the cross-sectional distortion of elbow is aggravated. The change of friction coefficient between polyurethane filler and tube affects the internal pressure provided by the polyurethane filler, and when the friction coefficient is small, it leads to insufficient forming and causes instability and wrinkle of tube. Thus, the feasibility of controllable internal pressure push bending is verified by the above study.

基金项目:
沈阳市科技计划项目(22-301-1-10);中国科学院青年创新促进会专项(2019195)
作者简介:
作者简介:徐勇(1983-),男,博士,研究员,E-mail:yxu@imr.ac.cn
参考文献:

 [1]权晋花.薄壁小半径弯管与中压内胀成形工艺[J]. 锻压装备与制造技术,2009,44 (3): 103-105.


Quan J H.Thin-walled tube with small radius and internal mediumpressure forming technique[J]. China Metalforming Equipment & Manufacturing Technology,2009,44 (3): 103-105.

[2]冀克明,曾婧,段振鑫,等.超细晶钛铝基合金的高温压缩性能研究[J].稀有金属,2022,46(5):572-580.

Ji K M, Zeng J, Duan Z X,et al. High temperature compression properties of ultrafine TiAl-based alloy[J]. Chinese Journal of Rare Metals, 2022,46(5):572-580.

[3]苑潇逸,宁江利,陶世洁,等.表面纳米化对挤压时效态Mg-Gd-Y-Zr合金室温拉伸性能的影响[J].稀有金属,2022,46(12):1546-1555. 

Yuan X Y,Ning J L,Tao S J,et al. Room-temperature tensile properties of extruded+peak aged Mg-Gd-Y-Zr alloy modified by surface nanocrystallization[J]. Chinese Journal of Rare Metals, 2022, 46(12):1546-1555.

[4]葛蒙召,王璋,高铁军,等. 支叉管零件充液成形工艺[J]. 锻压技术,2022,47(1):81-90.

Ge M Z,Wang Z,Gao T J,et al. Hydroforming process of fork tube parts[J]. Forging & Stamping Technology, 2022,47(1):81-90.

[5]周永新,冯苏乐,杨学勤,等. 大径厚比薄壁变曲率构件充液拉深成形技术[J]. 锻压技术,2022,47(4):126-133.

Zhou Y X,Feng S L,Yang X Q,et al. Hydro-drawing technology for thin-walled variable curvature part with large diameter to thickness ratio[J]. Forging & Stamping Technology,2022,47(4):126-133.

[6]黄遐,曾元松,张新华,等.不锈钢小弯曲半径管内压推弯成形过程有限元模拟[J]. 航空制造技术,2005,(10):74-77,97.

Huang X,Zeng Y S,Zhang X H,et al. FEM simulation pressure bending forming process for stainless steel tubewith small bend radius[J]. Aeronautical Manufacturing Technology,2005,(10): 74-77,97.

[7]苟毓俊,双远华,周研,等. 0Cr18Ni9 管材大曲率无芯弯曲横截面畸变研究[J]. 塑性工程学报,2019,26 (1):103-108.

Gou Y J,Shuang Y H,Zhou Y,et al. Research on cross section distortion of 0Cr18Ni9 tube in no-mandrel bending with large curvature[J]. Journal of Plasticity Engineering,2019,26 (1):103-108.

[8]张云峦,吴天华,张羽,等. 聚氨酯橡胶硬度对薄壁三通管内高压成形的影响[J]. 锻压技术,2022,47(1):91-97.

Zhang Y L,Wu T H,Zhang Y,et al. Influence of polyurethane rubber hardness on internal high pressure forming for thin-walled T-tube[J]. Forging & Stamping Technology, 2022,47(1):91-97.

[9]Liu H, Zhang S H, Song H W, et al. 3D FEM-DEM coupling analysis for granular-media-based thin-wall elbow tube push-bending process[J]. International Journal of Material Forming, 2019,12(6): 985-994.

[10]韩兆建. 金属薄壁管材充液弯曲工艺研究[D]. 秦皇岛:燕山大学, 2021.

Han Z J. Research on Liquid-filled Bending Process of Metal Thin-walled Pipes[D]. Qinhuangdao: Yanshan University, 2021.

[11]Xiao J, Xu X F, Zuo D W, et al. Effect of contact states in the tube on the push bending with low-melting-point alloy as filling medium[J]. The International Journal of Advanced Manufacturing Technology, 2022,123(11-12): 4277-4291.

[12]Jiang W H, Xie W L, Song H W, et al. A modified thin-walled tube push-bending process with polyurethane mandrel[J]. The International Journal of Advanced Manufacturing Technology, 2020,106(5): 2509-2521.

[13]Xu X F, Fan Y B, Wu Y W, et al. A novel differential lubrication method for push-bending of L-shaped thin-walled tube with 1D bending radius[J]. International Journal of Material Forming, 2021, 14(4):691-701.

[14]Zhang X, Zhao C C, Du B, et al. Research on hydraulic push-pull bending process of ultra-thin-walled tubes[J]. Metals, 2021,11(12): 932-1932.

[15]Xie W L, Jiang W H, Wu Y F, et al. Process parameter optimization for thin-walled tube push-bending using response surface methodology[J]. The International Journal of Advanced Manufacturing Technology,2021,118(11-12): 3833-3847.

[16]Song H W, Xie W L, Zhang S H, et al. Granular media filler assisted push bending method of thin-walled tubes with small bending radius[J]. International Journal of Mechanical Sciences, 2021, 198(1-3):106365.

[17]杨东,徐雪峰,范玉斌,等.大径厚比不锈钢弯管内胀冷推弯成形数值模拟及实验研究[J].锻压技术,2022,47(10):154-162.

Yang D, Xu X F,Fu Y B, et al. Numerical simulation and experimental study on internal expansion cold push bending for stainless steel bent tube with large diameter to thickness ratio [J]. Forging & Stamping Technology, 2022,47(10):154-162.

[18]方继钊, 郭伟, 陈根发, 等. GH4169高温合金薄壁管1D弯曲半径冷胀推弯成形研究[J]. 航空制造技术, 2022, 65(10):75-81.

Fang J Z, Guo W, Chen G F, et al. Study on push-bending forming of GH4169 superalloy thin-walled tube with small bending radius[J]. Aeronautical Manufacturing Technology, 2022, 65(10): 75-81.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9