网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
2219铝合金差厚球壳梯度超低温拉深成形规律
英文标题:Gradient ultra-low temperature deep drawing law of 2219 aluminum alloy spherical shell with differential thickness
作者:凡晓波1 刘洋1 邬方兴1 苑世剑1 2 
单位:1.大连理工大学 机械工程学院 2.哈尔滨工业大学 材料科学与工程学院 
关键词:铝合金 差厚板 梯度超低温拉深成形 成形性能 变形均匀性 
分类号:TG386
出版年,卷(期):页码:2023,48(5):155-161
摘要:

 针对铝合金差厚球壳薄厚过渡区易集中变形而导致开裂的难题,利用超低温条件下铝合金伸长率与硬化指数显著提高的双增效应,提出铝合金差厚球壳梯度超低温拉深成形新方法;通过超低温拉深成形工艺装置,在梯度超低温条件下试制了直径为Φ200 mm的2219铝合金差厚球型曲面件;结合数值模拟,分析了差厚球壳梯度超低温拉深成形规律,揭示了薄厚过渡区的变形协调机制。结果表明:超低温下高硬化能力可转移薄厚过渡区的集中变形,并且具有足够的塑性变形能力来承受由厚区约束导致的薄区变形增大;在梯度超低温下,厚薄比为2.0的差厚板的成形性能显著提高,相对常温提高76.4%。梯度超低温成形差厚球壳具有巨大潜力,可为大型差厚薄壁曲面件成形提供新路径。

 For the problem of cracking due to concentrated deformation in the thin-thickness transition zone of aluminum alloy spherical shell with differential thickness, a novel method of gradient ultra-low temperature deep drawing for aluminum alloy spherical shell with differential thickness was proposed by utilizing the double-increase effect of the significant increase in the elongation and hardening index of aluminum alloy under ultra-low temperature condition, and the 2219 aluminum alloy spherical curved surface parts with differential thickness and the diameter of Φ200 mm under the gradient ultra-low temperature condition was trial-produced by ultra-low temperature deep drawing process device. Then, combined with numerical simulation, the gradient ultra-low temperature deep drawing law of spherical shell with differential thickness was analyzed, and the deformation coordination mechanism in the thin-thickness transition zone was revealed. The results indicate that the high hardening capacity at ultra-low temperature can transfer the concentrated deformation in the thin-thickness transition zone, and has sufficient plastic deformation capacity to withstand the increased deformation in the thin zone caused by the constrant in the thick zone. Under the gradient ultra-low temperature, the formability of differential thickness sheet with a thickness ratio of 2.0 is significantly improved, which is 76.4% higher than that at normal temperature. Thus, the differential thickness spherical shell obtained by gradient ultra-low temperature forming has great potential, which can provides a new way for the forming of large differential thickness thin-walled curved surface parts.

基金项目:
国家重点研发计划项目(2019YFA0708804);中央高校基本科研业务费专项资金资助(DUT20ZD101)
作者简介:
作者简介:凡晓波(1987-),男,博士,副研究员,E-mail:xbfan@dlut.edu.cn
参考文献:

[1]徐永超,韩思雨,刘胜京. 液室压力加载路径对5A06铝合金锥形件充液拉深成形的影响[J].锻压技术,2022,47(12):38-43.


Xu Y C, Han S Y, Liu S J. The influence of liquid chamber pressure loading path on the liquid filled deep drawing forming of 5A06 aluminum alloy conical parts [J]. Forging & Stamping Technology, 2022, 47 (12): 38-43.

[2]张洪瑞,詹梅,郑泽邦,等. 航天大型薄壁回转曲面构件成形制造技术的发展与挑战[J].机械工程学报,2022,58(20):166-185.

Zhang H R, Zhan M, Zheng Z B, et al. Development and challenge of forming technology for aerospace large thin-wall rotary surface components [J]. Journal of Mechanical Engineering, 2022, 58(20): 166-185.

[3]Yuan S J. Research progress of fluid pressure forming theory and technology for thin-wall components with complex surfaces [J]. Engineering, 2021, 7(3): 189-206.

[4]Yuan S J, Fan X B. Developments and perspectives on the precision forming processes for ultra-large size integrated components[J]. International Journal of Extreme Manufacturing, 2019, 1(2): 022002.

[5]Kleiner M,Chatti S, Klaus A. Metal forming techniques for lightweight construction[J]. Journal of Materials Processing Technology, 2006, 177(1-3): 2-7.

[6]Urban M, Krahn M, Hirt G,et al. Numerical research and optimisation of high pressure sheet metal forming of tailor rolled blanks[J]. Journal of Materials Processing Technology, 2006, 177(1-3): 360-363.

[7]张思佳,胡贤磊,刘相华. 轧制差厚板方盒件拉深成形的试验与数值模拟[J].东北大学学报:自然科学版,2022,43(6):801-808. 

Zhang S J, Hu X L, Liu X H. Experimental and numerical simulation of deep drawing of rolled square box with differential thickness [J]. Journal of Northeastern University: Natural Science Edition, 2022, 43(6): 801-808.

[8]张华伟,王永喆,吴佳璐. 基于灰色关联分析的轧制差厚板盒形件充液拉深成形工艺参数多目标优化[J].精密成形工程,2023,15(2):180-187. 

Zhang H W, Wang Y Z, Wu J L. Multi objective optimization of process parameters for liquid filled deep drawing of rolling thick plate box shaped parts based on grey correlation analysis [J]. Journal of Netshape Forming Engineering, 2023, 15 (2): 180-187.

[9]凡晓波,王旭刚,陈险烁,等. 铝合金管材超低温介质压力胀形行为[J].锻压技术,2021,46(4):1-6. 

Fan X B, Wang X G, Chen X S, et al. Pressure bulging behavior of aluminum alloy pipe under ultra-low temperature medium [J]. Forging & Stamping Technology, 2021, 46(4): 1-6.

[10]凡晓波,洪吉庆,赖小明,等. 铝锂合金曲面件超低温成形工艺[J].宇航材料工艺,2021,51(4):126-130.

Fan X B, Hong J Q, Lai X M, et al. Ultra-low temperature forming technology of Al-Li alloy curved parts [J]. Aerospace Materials & Technology, 2021, 51(4):126-130.

[11]Fan X B, Yuan S J. Innovation for forming aluminum alloy thin shells at ultra-low temperature by the dual enhancement effect[J]. International Journal of Extreme Manufacturing, 2022, 4(3): 103-107.

[12]Fan X B, Chen X S, Yuan S J. Novel forming process for aluminum alloy thin shells at ultra-low temperature gradient[J]. International Journal of Machine Tools and Manufacture, 2023, 185: 103992.

[13]Gao Y R, Li H X, Zhao D Y, et al. Cryogenic friction behavior of aluminum alloys sheets under dry contact condition[J]. Tribology International, 2023, 180: 108227.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9