网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
碳纳米管增强铝基复合材料薄壁椭球件旋压成形实验
英文标题:Spinning test for thin-walled hemispherical shell part of CNTs/Al composites
作者:冯苏乐1 余小鹏2 李志强3 宋若存2 杨学勤1 于忠奇2 
单位:1.上海航天精密机械研究所 2.上海交通大学 上海市复杂薄壁结构数字化制造重点实验室  3.上海交通大学 材料科学与工程学院 
关键词:铝基复合材料 薄壁构件 旋压成形 人工时效 碳纳米管 
分类号:TG306
出版年,卷(期):页码:2023,48(5):183-187
摘要:

 铝基复合材料作为一种新型轻质高强材料,在航天型号产品上具有重要的应用前景。以碳纳米管增强铝基复合材料为对象,开展薄壁曲母线构件旋压成形和热处理工艺研究,评估碳纳米管增强铝基复合材料薄壁件工程应用的可行性。旋压实验表明:通过与现有航天用铝合金材料对比,获得了碳纳米管增强铝基复合材料“固溶500 ℃×2 h+时效150 ℃×4 h”的最佳参数组合,并采用多道次旋压工艺,得到的薄壁椭球件具有良好的几何精度;同时,经过人工时效后旋压件的拉伸强度可达580 MPa,相较于现有铝合金材料提高了35%。本研究成果为碳纳米管增强铝基复合材料在大型航天薄壁件上的工程应用提供了技术支持。

 As a new type of lightweight and high-strength material, aluminum matrix composites have important application prospects in aerospace products. Therefore, for carbon nanotube reinforced aluminum matrix composites (CNTs/Al composites), the spinning and heat treatment process of thin-walled curved busbar components were studied to evaluate the feasibility in engineering application of CNTs/Al composites thin-walled part. The spinning tests show that compared with the existing aluminum alloy materials for aerospace, the optimal parameter combination of “solid solution 500 ℃×2 h+ aging 150 ℃×4 h” of CNTs/Al composites is obtained, and the thin-walled hemispherical shell parts with good geometric accuracy are formed by multi-pass spinning process. At the same time, the tensile strength of spun part can reach 580 MPa after artificial aging, which is 35% higher than that of the existing aluminum alloy material. Thus, the research results provide technical support for the engineering application of CNTs/Al composites in large aerospace thin-walled parts.

基金项目:
国家自然科学基金资助项目(52175346)
作者简介:
作者简介:冯苏乐(1987-),男,硕士,高级工程师,E-mail:fengsuleshikeke@126.com
参考文献:

[1]赵天章,金龙,贾震,等.2198铝锂合金新淬火状态旋压成形研究[J]. 塑性工程学报,2020,27 (6):66-71.


Zhao T Z,Jin L,Jia Z,et al. Study on spinning forming of 2198 Al-Li alloy under new-quenched state[J]. Journal of Plasticity Engineering,2020,27(6): 66-71.

[2]Kong Q S, Yu Z Q, Zhao Y X, et al. Theoretical prediction of flange wrinkling in first-pass conventional spinning of hemispherical part[J]. Journal of Materials Processing Technology, 2017, 246: 56-68.

[3]张洪瑞, 詹梅, 郑泽邦, 等. 航天大型薄壁回转曲面构件成形制造技术的发展与挑战[J]. 机械工程学报, 2022,58(20):166-185.

Zhang H R,Zhan M,Zheng Z B,et al. Development and challenge of forming manufacturing technologies for aerospace large-scale thin-wall axisymmetric curved-surface components[J]. Journal of Mechanical Engineering,2022,58(20):166-185.

[4]George R, Kashyap K T, Rahul R,et al. Strengthening in carbon nanotube/aluminium (CNT/Al) composites[J]. Scripta Materialia,2005,53(10):1159-1163.

[5]Yu Z Y, Tan Z Q, Fan G L, et al. Effect of interfacial reaction on Young′s modulus in CNT/Al nanocomposite: A quantitative analysis[J]. Materials Characterization, 2018, 137: 84-90.

[6]Xu R, Tan Z Q, Fan G L, et al. Microstructure-based modeling on the structure-mechanical property relationship in CNT/Al composites[J]. International Journal of Plasticity, 2019, 120: 278-295.

[7]马凤仓, 吕维洁, 覃继宁. 锻造对(TiB+TiC)增强钛基复合材料组织和高温性能的影响[J]. 稀有金属, 2006, 30(2): 236-240.

Ma F C,Lyu W J,Tan J N. Effect of forging on microstructure and mechanical properties of (TiB+TiC)/Ti composite[J]. Chinese Journal of Rare Metals,2006,30 (2): 236-240.

[8]Deng C F, Zhang X X, Wang D Z, et al. Preparation and characterization of carbon nanotubes/aluminum matrix composites[J]. Materials Letters, 2007, 61(8/9): 1725-1728.

[9]鞠晓菲. 原位自生TiB2/7050复合材料的超塑性行为及其变形机制[D]. 上海:上海交通大学, 2018.

Ju X F. Superplastic Behaviour and Mechanism of In-situ TiB2/7050 Composite[D].Shanghai: Shanghai Jiao Tong University, 2018.

[10]Rastegari H A, Asgari S, Abbasi S M. Producing Ti-6Al-4V/TiC composite with good ductility by vacuum induction melting furnace and hot rolling process[J]. Materials & Design, 2011, 32(10): 5010-5014.

[11]徐润. 碳纳米管增强铝基复合材料的微结构调控与强塑性研究[D]. 上海:上海交通大学, 2019.

Xu R. Investigation on the Microstructure Talioring and Strength-ductility Behavior in Carbon Nanotube Reinforced Al Matrix Composites[D]. Shanghai: Shanghai Jiao Tong University, 2019.

[12]张彦民. 2024高强铝合金热处理工艺研究[J]. 热加工工艺, 2020, 49(24):122-124.

Zhang Y M. Study on heat treatment process of 2024 high strength aluminum alloy[J]. Hot Working Technology, 2020, 49(24): 122-124.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9