网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
大径厚比超薄铝合金构件3D增量成形规律
英文标题:3D incremental forming law of ultra-thin aluminum alloy components with large diameter-thickness ratio
作者:李岩1 张瑶1 庞秋2 胡志力1 3 4 
单位:1.湖北隆中实验室  2.武汉科技大学 机械自动化学院  3.武汉理工大学 现代汽车零部件技术湖北省重点实验室  4.武汉理工大学 湖北省材料绿色精密成形工程技术研究中心 
关键词:3D增量成形 大径厚比 超薄铝合金 破裂 起皱 
分类号:TG386
出版年,卷(期):页码:2023,48(5):193-204
摘要:

 传统采用的厚板成形后再铣削加工的大径厚比(≥1500∶1)超薄铝合金构件的制造方式,存在工序长、效率低、成本高等问题,因此,采用无需使用模具的、工艺柔性高的3D增量成形技术。以卫星天线反射面为对象,通过实验研究了不同参数的大径厚比(≥1640∶1)超薄铝合金构件的3D增量成形规律,采用Abaqus模拟分析了3D增量成形过程中的塑性应变以及板料减薄情况。结果表明:在大径厚比超薄铝合金构件3D增量成形过程中出现了破裂和起皱两种缺陷,通过分析缺陷成形机理和板料偏移规律发现,当层进给量或构件壁角过大时,板料容易失稳,易产生缺陷。最后,通过进行小层进给量(0.05 mm)的双道次成形,降低了板料成形时的应变,成功加工出无缺陷的大径厚比超薄铝合金3D增量成形构件。

 The traditional manufacturing mode of ultra-thin aluminum alloy components with large diameter-thickness ratio (≥1500∶1) by milling after thick plate forming has problems such as long process, low efficiency and high costs. Therefore, the 3D incremental forming technology that does not need to use dies and has high process flexibility is adopted. For the reflector of satellite antenna, the law of 3D incremental forming for ultra-thin aluminum alloy components with large diameter-thickness ratio (≥1640∶1) of different parameters was studied by experiments, and the plastic strain and sheet metal thinning in the 3D incremental forming process were analyzed by Abaqus simulation. The results show that cracking and wrinkling defects appear in the 3D incremental forming process for ultra-thin aluminum alloy components with large diameter-thickness ratio, and the analysis on the forming mechanism of defects and the sheet metal offset law reveal that when the layer feeding amount or the wall angle of the component is too large, the sheet metal is prone to instability and produce defects. Finally, through double-pass forming with small layer feeding amount (0.05 mm), the strain of sheet metal during forming is reduced, and the defect-free ultra-thin aluminum alloy 3D incrementally formed component with large diameter-thickness ratio is successfully processed.

基金项目:
湖北隆中实验室自主创新研究项目(2022ZZ-04);湖北省自然科学基金资助项目(2021CFB523);湖北省重点研发计划项目(2021BAA200);湖北省科技重大项目(2022AAA001)
作者简介:
作者简介:李岩(1998-),男,硕士研究生,E-mail:yanlidk@126.com;通信作者:胡志力(1983-),男,博士,博士生导师,教授,E-mail:zhilihuhit@163.com
参考文献:

[1]齐峰, 岳殿武, 孙玉. 面向6G的智能反射面无线通信综述[J]. 移动通信, 2022, 46(4): 65-73.


Qi F, Yue D W, Sun Y. A survey of intelligent reflecting surface wireless communications toward 6G[J]. Mobile Communications, 2022, 46(4): 65-73.

[2]段嘉鑫, 刘艳雄, 刘鹏. 3A21 铝合金微波反射面全工序冲压成形精度传递模型研究[J]. 塑性工程学报, 2021, 28(1): 45-41.

Duan J X, Liu Y X, Liu P. Research on forming precision transfer model of complete stamping process of 3A21 aluminum alloy microwave reflector[J]. Journal of Plasticity Engineering, 2021, 28(1): 45-41.

[3]冯树飞. 大型全可动反射面天线结构保型及创新设计研究[D]. 西安: 西安电子科技大学, 2019.

Feng S F. Study on Structural Homologous and Innovation Design for Large Steerable Antennas[D]. Xi′an: Xidian University, 2019.

[4]杨毓岚. 微波段天线反射面冲压成形仿真[D]. 重庆: 重庆大学, 2006.

Yang Y L. The Forming Simulation of the Parabolic Reflector Antenna Surface[D]. Chongqing: Chongqing University, 2006.

[5]张在房, 徐冯, 孙习武. 火箭贮箱箱底充液拉深成形工艺的多目标优化[J]. 机械工程学报, 2022,58(5): 78-86.

Zhang Z F, Xu F, Sun X W. Multi-objective optimization of hydroforming process of rocket tank bottom [J]. Journal of Mechanical Engineering, 2022,58(5): 78-86.

[6]Lesazk E. Apparatus and process for incremental dieless forming [P]. United States Patent,3342051, 1967-09-19.

[7]Martins P A F, Bay N, Skjoedt M,et al. Theory of single point incremental forming[J]. CIRP Annals,2008, 57(1): 247-252.

[8]Jeswiet J, Micari F, Hirt G, et al. Asymmetric single point incremental forming of sheet metal[J]. CIRP Annals,2005, 54(2): 88-114.

[9]Praveen K G, Kurra S. Analysis of deformation behavior in various incremental tube forming processes[J]. Materials and Manufacturing Processes,2021, 36(14): 1631-1641.

[10]侯晓莉,李言,邱旭,等.铜管变角度增量翻边成形极限的试验研究[J].锻压技术, 2022, 47(10):162-168.

Hou X L, Li Y, Qiu X, et al. Experimental study on forming limit of variable angle incremental flanging for copper tube [J]. Forging & Stamping Technology, 2022, 47(10):162-168.

[11]Pandre S, Morchhale A, Kotkunde N, et al. Processing of DP590 steel using single point incremental forming for automotive applications[J]. Materials and Manufacturing Processes,2021, 36(14): 1658-1666.

[12]权成,肖继明.长锥管增量成形扩口工艺研究[J].塑性工程学报,2021,28(4):52-59.

Quan C, Xiao J M. Research on incremental flaring forming process of long conical pipe [J]. Journal of Plasticity Engineering, 2021,28(4):52-59.

[13]Gatea S, Lu B, Chen J, et al. Investigation of the effect of forming parameters in incremental sheet forming using a micromechanics based damage model[J]. International Journal of Material Forming,2019, 12(4): 553-574.

[14]Zhan X P, Wang Z H, Li M, et al. Investigations on failure-to-fracture mechanism and prediction of forming limit for aluminum alloy incremental forming process[J]. Journal of Materials Processing Technology,2020, 282:116687.

[15]Malhotra R, Xue L, Belytschko T, et al. Mechanics of fracture in single point incremental forming[J]. Journal of Materials Processing Technology,2012, 212(7): 1573-1590.

[16]Ai S, Long H. A review on material fracture mechanism in incremental sheet forming[J]. The International Journal of Advanced Manufacturing Technology,2019, 104(1-4): 33-61.

[17]周六如. 金属板料数控渐进成形机理及工艺的研究[D]. 武汉: 华中科技大学, 2004.

Zhou L R. Study on Principle and Process of NC Incremental Sheet Metal Forming[D]. Wuhan: Huazhong University of Science & Technology, 2004.

[18]Fang Y, Lu B, Chen J, et al. Analytical and experimental investigations on deformation mechanism and fracture behavior in single point incremental forming[J]. Journal of Materials Processing Technology,2014, 214(8): 1503-1515.

[19]Jakson K, Allwood J. The mechanics of incremental sheet forming[J]. Journal of Materials Processing Technology,2009, 209(3):1158-1174.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9