网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
薄壁铝合金管机器人弯曲成形起皱调控优化建模仿真及工艺优化
英文标题:Control and optimization of wrinkling during robotic bending for thin-walled aluminum alloy tube
作者:郭训忠1 2 许祥勇1 刘春梅1 2 白雪山3 张坤3 孙振彪1 沈然涛1 
单位:1.南京航空航天大学 航空航天结构力学及控制全国重点实验室  2. 浙江金马逊智能制造股份有限公司 浙江省航空航天金属导管塑性成形技术与装备重点实验室  3. 航空工业沈阳飞机工业(集团)有限公司 
关键词:薄壁铝合金管 机器人弯曲成形技术 几何微缺陷 起皱调控 响应面优化 
分类号:TG391
出版年,卷(期):页码:2023,48(5):205-220
摘要:

 机器人管材弯曲成形技术是于工业4.0大背景下诞生的一种新型高灵活度管材弯曲成形技术,可实现细长管件的全自动化快速弯曲成形。工业机器人控制的末端弯曲装置在弯曲旋转的同时沿管材轴线方向进给,一定程度上改善了弯管件壁厚减薄的问题,但增大了起皱趋势。针对该问题,以Al6061铝合金管为对象,开展薄壁管机器人弯曲成形起皱优化调控。选取嵌入几何微缺陷后模型计算中消耗能量最低时的波长、起皱形貌以及与实际样件最为相似时的缩放因子作为最佳参数,建立了嵌入几何微缺陷的机器人管材弯曲成形有限元模型。采用几何微缺陷耦合有限元模型、响应面优化分析及成形实验相结合的方法,建立了起皱响应面回归预测模型,通过获得的响应曲面与等高线图,揭示了工艺参数耦合对Al6061铝合金薄壁管机器人弯曲成形起皱的影响规律,获得了最佳成形工艺参数,进一步验证了起皱预测模型和嵌入几何微缺陷的有限元模型的可靠性。

 Born in the context of Industry 4.0, robotic tube bending technology is a new and highly flexible tube bending technology, which enables fully automatic and rapid bending of long and thin tubes. While bending and rotating, the robot-controlled end bending device can feed along the direction of the tube axis, which can improve the wall thickness reduction of bent tubes, but on the other hand increase the tendency of wrinkling. Therefore, taking Al6061 aluminum alloy tube as the object, the optimization and control of wrinkling during the thin-walled tube bending by robot were carried out. Selecting the wavelength at the lowest energy consumption during the model calculation after embedding geometric micro-defect, wrinkling morphology and scaling factor that was the most similar to the actual sample as the optimal parameters, the finite element model of robotic tube bending with embedded geometric micro-defects was established. Using the combination method of the finite element model with geometric micro-defect coupling, response surface optimization analysis and forming experiments, a response surface regression prediction model for wrinkling was established. Through the obtained response surface and contour map, the influence laws of process parameter coupling on wrinkling during robotic bending of Al6061 aluminum alloy thin-walled tube was revealed, and the optimal forming process parameters were obtained. And then the reliability of the wrinkling prediction model and the finite element model embedded geometric micro-defects were further validated.

基金项目:
国家自然科学基金青年基金(52105362);国家自然科学基金面上基金(52175328);江苏省自然科学基金青年基金(BK20210310)
作者简介:
作者简介:郭训忠(1981-),男,博士,教授,E-mail:guoxunzhong@nuaa.edu.cn;通信作者:刘春梅(1989-),女,博士,讲师,E-mail:liuchunmei@nuaa.edu.cn
参考文献:

[1]郭训忠,徐勇,陶杰,等. 金属空心构件先进冷成形技术[M]. 北京:科学出版社, 2019.


Guo X Z,Xu Y,Tao J,et al. Advanced Cold Forming Technology of Metal Hollow Components[M]. Beijing:Science Press, 2019. 

[2]张士宏, 程明, 宋鸿武,等. 航空航天复杂曲面构件精密成形技术的研究进展[J]. 南京航空航天大学学报, 2020,52(1):1-11.

Zhang S H, Cheng M, Song H W, et al. Research progress on precision forming technology for complex curved surface components in aerospace[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2020,52(1):1-11.

[3]郭训忠, 陶杰, 王辉. 航空导管先进成形技术的研究进展[J]. 南京航空航天大学学报, 2020,52(1):12-23.

Guo X Z,Tao J,Wang H. Research progress on aadvanced forming technology for aviation tube [J]. Journal of Nanjing University of Aeronautics & Astronautics, 2020,52(1):12-23.

[4]Yang H, Li H, Zhang Z Y, et al. Advances and trends on tube bending forming technologies [J]. Chinese Journal of Aeronautics, 2012,25(1):1-12.

[5]詹梅, 杨合, 江志强. 管材弯曲成形的国内外研究现状及发展趋势[J]. 机械科学与技术, 2004,(12):1509-1514.

Zhan M, Yang H, Jiang Z Q. State of the art of research on tube bending process[J]. Mechanical Science and Technology, 2004,(12):1509-1514.

[6]Takuya K.Bending device and bending method[P]. US:US09241711,2001-02-13.

[7]Sun Z B, Liu C M, Guo X Z, et al. Forming characteristics of a novel robot-based tube bending process[J]. The International Journal of Advanced Manufacturing Technology, 2022,121(9-10):6685-6702.

[8]Chen J S, E D X, Zhang J W. Effects of process parameters on wrinkling of thin-walled circular tube under rotary draw bending[J]. The International Journal of Advanced Manufacturing Technology, 2013,68(5-8):1505-1516.

[9]Hasanpour K, Barati M, Amini B, et al. The effect of anisotropy on wrinkling of tube under rotary draw bending[J]. Journal of Mechanical Science and Technology, 2013,27(3):783-792.

[10]Cornelissen R, Maljaars J, Hofmeyer H. Buckling and wrinkling of rectangular hollow sections curved in three-point-roll bending[J]. The International Journal of Advanced Manufacturing Technology, 2021,112(7-8):2091-2107.

[11]车移, 詹红, 屈俊岑,等. 基于全量流动理论的管材弯曲过程失稳分析研究[J]. 精密成形工程, 2021,13(3):112-117.

Che Y, Zhan H, Qu J C, et al. Analysis on instability in tube bending process based on total theory of plasticity[J]. Journal of Netshape Forming Engineering, 2021,13(3):112-117.

[12]Limam A, Lee L H, Corona E, et al. Inelastic wrinkling and collapse of tubes under combined bending and internal pressure[J]. International Journal of Mechanical Sciences, 2009,52(5):637-647.

[13]Simonetto E, Ghiotti A, Bruschi S. Dynamic detection of tubes wrinkling in three roll push bending[J]. Procedia Engineering, 2017,207:2316-2321.

[14]鄂大辛, 周大军. 金属管材弯曲理论及成形缺陷分析[M]. 北京: 北京理工大学出版社, 2016.

E D X,Zhou D J. Metal Tube Bending:Theory and Forming Defects Analysis[M]. Beijing: Beijing Institute of Technology Press, 2016.

[15]Donnell L H, Wan C C. Effect of imperfections on buckling of thin cylinders and columns under axial compression[J]. J. Appl. Mech., 1950,17(1):73-83.

[16]刘楠. 复杂边界条件下薄壁件塑性成形失稳起皱预测[D]. 西安:西北工业大学, 2015.

Liu N. Instability and Wrinkling Prediction in Plastic Forming Processes of Thin-walled Parts under Complex Boundary Conditions[D]. Xi′an:Northwestern Polytechnical University, 2015.

[17]赵腾伦. ABAQUS 6.6在机械工程中的应用[M]. 北京:中国水利水电出版社, 2007.

Zhao T L. Application of ABAQUS 6.6 in Mechanical Engineering[M]. Beijing:China Water & Power Press, 2007.

[18]张开铭, 王克鲁, 鲁世强,等. 基于响应面法对S280超高强度不锈钢的热变形行为研究[J/OL].航空学报:1-14[2022-06-21].http://kns.cnki.net/kcms/detail/11.1929.v.20220617. 1545.025.html.

Zhang K M,Wang K L,Lu S Q,et al. Thermal deformation behavior of S280 ultra-high strength stainless steel based on response surface methodology[J/OL]. Acta Aeronautica et Astronautica Sinica:1-14[2022-06-21].http://kns.cnki.net/kcms/detail/11.1929.v.20220617.1545.025.html.

[19]徐佳俊, 徐雪峰, 范玉斌,等. 基于响应面法的Y型管内高压成形加载路径优化[J]. 塑性工程学报, 2022,29(6):67-75.

Xu J J,Xu X F,Fan Y B,et al. Loading path optimization for internal high-pressure forming of Y-shaped tube based on response surface method [J]. Journal of Plasticity Engineering, 2022,29(6):67-75.

[20]吴永根, 张泽垚, 刘庆涛,等. 运用响应面法的无机聚合物混凝土性能分析[J]. 空军工程大学学报:自然科学版, 2017,18(3):92-98.

Wu Y G,Zhang Z Y,Liu Q T,et al. Study on performance of inorganic polymer concrete basedon response surface methodology[J]. Journal of Air Force Engineering University:Natural Science Edition, 2017,18(3):92-98.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9