[1]韩聪, 苑世剑. 汽车轻量化结构件内高压成形技术与装备最新进展[J]. 汽车工艺师, 2017, 21(4): 24-26.
Han C, Yuan S J. The latest development of internal high pressure forming technology and equipment for automotive lightweight structural parts[J]. Auto Manufacturing Engineer, 2017, 21(4): 24-26.
[2]朱书建. T型三通管内高压成形的仿真与优化研究[D]. 柳州:广西科技大学, 2018.
Zhu S J. Simulation and Optimization of High Pressure Forming in T-shape Tube [D]. Liuzhou:Guangxi University of Science and Technology,2018.
[3]Zhang Z C, Kang Y J, Furushima T, et al. Deformation behaviour of metal micro tube during hydroforming process [J]. Procedia Manufacturing, 2020, 50: 328-331.
[4]Bell C, Corney J R, Zuelli N, et al. A state of the art review of hydroforming technology: Its applications,research areas, history, and future in manufacturing [J]. International Journal of MaterialForming, 2020, 13(5): 789-828.
[5]续迎萍, 崔岸, 马浩通, 等. 基于模糊控制的Y形管内高压成形加载路径优化[J]. 机床与液压, 2022, 50(10): 19-25.
Xu Y P, Cui A, Ma H T, et al. Optimization of loading path for internal high pressure forming in Y-shaped tube based on fuzzy control[J]. Machine Tool & Hydraulics, 2022, 50(10): 19-25.
[6]Zhou B J, Xu Y C. Wrinkle behavior of hydroforming of aluminum alloy double-layer sheets[J]. JOM, 2016, 68(12): 3201-3207.
[7]彭俊阳, 罗德高, 滕步刚, 等. 薄壁Y型三通管内高压成形起皱与开裂分析[J]. 材料科学与工艺, 2017, 25 (4): 11-16.
Peng J Y, Luo D G, Teng B G, et al. Analysis on wrinkling and cracking initiation in hydroforming thin-walled Y-shaped tubes [J]. Materials Science and Technology, 2017, 25(4): 11-16.
[8]张举, 徐雪峰, 肖尧, 等. 基于区域润滑的Y型管内高压成形壁厚分布优化[J]. 塑性工程学报, 2021, 28(9): 73-79.
Zhang J, Xu X F, Xiao Y, et al. Optimization of wall thickness distribution of Y-shaped tube in hydroforming based on area lubrication[J]. Journal of Plasticity Engineering, 2021, 28(9): 73-79.
[9]Jirathearanat S, Hartl C, Altan T. Hydroforming of Y-shapes-product and process design using FEA simulation and experiments[J]. Journal of Materials Processing Technology, 2014,146(1): 124-129.
[10]Liu G, Peng J Y, Wang X S, et al. Effects of preform on thickness distribution of hydroformed Y-shaped tube[J]. Advanced Materials Research, 2011, 189-193: 2796-2800.
[11]Guo X Z, Tao J, Yuan Z, et al. Hydroforming simulation and preparation of low activation martensitic steel Y-shapes[J]. Nuclear Engineering & Design, 2011, 241(8): 2802-2806.
[12]王鑫, 余心宏. Y型三通管内高压成形机理及补料比的影响研究[J]. 材料工程, 2013, (1): 35-39,72.
Wang X, Yu X H. Hydroforming mechanism of Y-shaped tube and influence of axial feed ratio on forming [J]. Journal of Materials Engineering, 2013, (1): 35-39,72.
[13]GB/T 228.1—2021,金属材料拉伸试验第1部分: 室温试验方法[S].
GB/T 228.1—2021, Metallic materials—Tensile testing—Part 1: Method of test at room temperature [S].
[14]徐佳俊, 徐雪峰, 范玉斌, 等. 基于响应面法的Y型管内高压成形加载路径优化[J]. 塑性工程学报, 2022, 29(6): 67-75.
Xu J J, Xu X F, Fan Y B, et al. Loading path optimization for internal high-pressure forming of Y-shaped tube based on response surface method[J]. Journal of Plasticity Engineering, 2022, 29(6): 67-75.
[15]Siano D. Three-dimensional/one-dimensional numerical correlation study of a three-pass perforated tube[J]. Simulation Modelling Practice and Theory, 2011, 19(4): 1143-1153.
[16]肖尧. Y型管内高压成形影响因素研究及壁厚分布优化[D]. 南昌:南昌航空大学, 2019.
Xiao Y. Study on the Influencing Factors of Hydroforming of Y-shaped Tube and Thickness Distribution Optimization [D]. Nanchang:Nanchang Hangkong University, 2019.
|