[1]赵征志,陈伟健,高鹏飞,等.先进高强度汽车用钢研究进展及展望 [J].钢铁研究学报,2020,32(12):1059-1076.
Zhao Z Z,Chen W J,Gao P F,et al. Progress and perspective of advanced high strength automotive steel [J]. Journal of Iron and Steel Research,2020,32(12):1059-1076.
[2]徐李军,时朋召,张淑兰.低合金高强钢微观组织转变机制 [J].钢铁研究学报,2019,31(11):988-996.
Xu L J, Shi P Z,Zhang S L. Microstructure evolution mechanism of HSLA steel [J]. Journal of Iron and Steel Research, 2019, 31(11):988-996.
[3]徐鑫,梁笑,李春林,等. 应变速率对δ-TRIP980钢动态拉伸变形行为的影响 [A].中国金属学会.第十三届中国钢铁年会论文集 [C].北京:冶金工业出版社,2022.
Xu X, Liang X, Li C L, et al. Effect of strain rate on the dynamic tensile deformation behavior of δ-TRIP980 steel [A]. Chinese Socirty for Metals. Proceedings of the 13th Annual China Steel Conference [C].Beijing:Metallurgical Industry Press, 2022.
[4]徐勇,段星宇,陈帅峰,等.DP980高强钢静动态拉伸性能及本构模型构建 [J].塑性工程学报,2022,29(6):125-133.
Xu Y, Duan X Y, Chen S F, et al. Static and dynamic tensile properties and constitutive model construction of DP980 high-strength steel [J]. Journal of Plasticity Engineering, 2022, 29(6):125-133.
[5]张伟,潘跃,刘华赛,等.应变速率对增强成形性双相钢性能影响分析 [J].钢铁,2022,57(4):123-129.
Zhang W, Pan Y, Liu H S, et al. Effect of strain rate on properties of dual phase steel with high formability [J]. Iron and Steel, 2022, 57(4):123-129.
[6]徐超, 朱超群, 何燕霖,等. 不同应变速率下DP钢变形行为的微观机理研究 [J]. 上海金属, 2014, 36(3):1-5.
Xu C, Zhu C Q, He Y L, et al. Study on the microscopic deformation mechanism of DP steel at different strain rates [J]. Shanghai Metals, 2014, 36(3):1-5.
[7]GB/T 228.1—2021,金属材料拉伸试验第1部分:室温试验方法 [S].
GB/T 228.1—2021,Metallic materials—Tensile testing—Part 1: Method of test at room temperature [S].
[8]GB/T 30069.2—2016,金属材料高应变速率拉伸试验第2部分:液压伺服型与其他类型试验系统 [S].
GB/T 30069.2—2016, Metallic materials—Tensile testing at high strain rates—Part 2: Servo-hydraulic and other test systems [S].
[9]邓彬, 李庆芬, 吴远志,等. 高应变速率多向锻造对AZ31镁合金组织及耐腐蚀性能的影响 [J]. 锻压技术,2021,46(8): 7-11,25.
Deng B, Li Q F, Wu Y Z, et al. Influence of high strain rate multi-directional forging on microstructure and corrosion resistance property for AZ31 magnesium alloy [J]. Forging & Stamping Technology, 2021,46(8): 7-11,25.
[10]Chen G, Huang L, Link T M,et al. Calibration and validation of GISSMO damage model for a 780 MPa third generation advanced high strength steel [A]. SAE International.WCX SAE World Congress Experience [C]. Detroit, 2020.
[11]郑鑫福,任鹏飞,郑崇嵩,等. HC260LAD+Z钢动态力学性能及其本构模型研究 [J]. 机电工程技术,2022,51(5):70-73,203.
Zheng X F, Ren P F, Zheng C S, et al. Research on dynamic property and constitutive modeling for HC260LAD+Z steel [J]. Mechanical & Electrical Engineering Technology, 2022, 51(5):70-73,203.
[12]余立, 刘静, 葛锐,等. DP780双相钢在不同应变状态下的断裂特性及机理 [J]. 锻压技术, 2022, 47(10): 48-55.
Yu L, Liu J, Ge R, et al. Fracture characteristics and mechanism on DP780 dual-phase steel under different strain states [J]. Forging & Stamping Technology, 2022, 47(10):48-55.
[13]潘利波,左治江,周文强,等. 双相钢的成形与断裂极限性能分析 [J]. 锻压技术,2021,46(7):185-189.
Pan L B,Zuo Z J,Zhou W Q,et al. Analysis on forming and fracture limit properties for dual phase steel [J]. Forging & Stamping Technology,2021,46(7):185-189.
|