网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
应变速率对低合金高强钢性能的影响
英文标题:Influence of strain rate on properties for low alloy high strength steel
作者:刘海娜1 梅运东1 刘领兵2 
单位:(1.黄河交通学院 机电工程学院 河南 焦作 454950 2.焦作市泰鑫机械制造有限责任公司 河南 焦作 454000) 
关键词:应变速率  低合金高强钢  抗拉强度 断裂吸收能 断口形貌 
分类号:U463.83
出版年,卷(期):页码:2023,48(6):253-257
摘要:

 以低合金高强钢H300LA为研究对象,采用液压伺服高速拉伸试验机,选取应变速率为0.001、0.1、1、10、100、200、500、1000 s-1开展力学性能测试,获取不同应变速率下的屈服强度、抗拉强度和伸长率等性能参数,并通过积分力学曲线计算了不同应变速率下的断裂吸收能,分析了应变速率对材料性能的影响规律。采用扫描电子显微镜(Scanning Electron Microscope, SEM)分析了不同应变速率下的试样断口形貌和变化规律,获取了材料的断裂特性。结果表明:低合金高强钢H300LA的抗拉强度和伸长率与应变速率呈正相关,具有明显的应变速率敏感性;断裂吸收能随着应变速率的增加而增加;断口形貌均呈韧窝状,随着应变速率的增加,韧窝数量增加且尺寸增大。

 For low alloy high strength steel H300LA, the mechanical properties were tested by hydraulic servo high-speed tensile testing machine at strain rates of 0.001, 0.1,1, 10, 100, 200,500 and 1000 s-1, and the yield strength, tensile strength and elongation under different strain rates were obtained. Then, the fracture absorption energy under different strain rates was calculated by integral mechanical curve, and the influence laws of strain rate on material properties were analyzed. Furthermore, the fracture morphology and change law of the test specimens under different strain rates were analyzed by scanning electron microscopy, and the fracture characteristics of the material were analyzed. The results show that the tensile strength and elongation of low alloy high strength steel H300LA are positively correlated with strain rate, and have obvious strain rate sensitivity. The fracture absorption energy increases with the increasing of strain rate, and the fracture morphology is dimple. As the strain rate increases, the number and the size of dimples increase.

基金项目:
河南省智能制造技术与装备工程技术研究中心项目(3118210370)
作者简介:
刘海娜(1984-),女,硕士,讲师
参考文献:

 
[1]赵征志,陈伟健,高鹏飞,等.先进高强度汽车用钢研究进展及展望
[J].钢铁研究学报,2020,32(12):1059-1076.


Zhao Z Z,Chen W J,Gao P F,et al. Progress and perspective of advanced high strength automotive steel
[J]. Journal of Iron and Steel Research,2020,32(12):1059-1076.


[2]徐李军,时朋召,张淑兰.低合金高强钢微观组织转变机制
[J].钢铁研究学报,2019,31(11):988-996.

Xu L J, Shi P Z,Zhang S L. Microstructure evolution mechanism of HSLA steel
[J]. Journal of Iron and Steel Research, 2019, 31(11):988-996.


[3]徐鑫,梁笑,李春林,等. 应变速率对δ-TRIP980钢动态拉伸变形行为的影响
[A].中国金属学会.第十三届中国钢铁年会论文集
[C].北京:冶金工业出版社,2022.

Xu X, Liang X, Li C L, et al. Effect of strain rate on the dynamic tensile deformation behavior of δ-TRIP980 steel
[A]. Chinese Socirty for Metals. Proceedings of the 13th Annual China Steel Conference
[C].Beijing:Metallurgical Industry Press, 2022.


[4]徐勇,段星宇,陈帅峰,等.DP980高强钢静动态拉伸性能及本构模型构建
[J].塑性工程学报,2022,29(6):125-133.

Xu Y, Duan X Y, Chen S F, et al. Static and dynamic tensile properties and constitutive model construction of DP980 high-strength steel
[J]. Journal of Plasticity Engineering, 2022, 29(6):125-133.


[5]张伟,潘跃,刘华赛,等.应变速率对增强成形性双相钢性能影响分析
[J].钢铁,2022,57(4):123-129.

Zhang W, Pan Y, Liu H S, et al. Effect of strain rate on properties of dual phase steel with high formability
[J]. Iron and Steel, 2022, 57(4):123-129.


[6]徐超, 朱超群, 何燕霖,等. 不同应变速率下DP钢变形行为的微观机理研究
[J]. 上海金属, 2014, 36(3):1-5.

Xu C, Zhu C Q, He Y L, et al. Study on the microscopic deformation mechanism of DP steel at different strain rates
[J]. Shanghai Metals, 2014, 36(3):1-5.


[7]GB/T 228.1—2021,金属材料拉伸试验第1部分:室温试验方法
[S].

GB/T 228.1—2021,Metallic materials—Tensile testing—Part 1: Method of test at room temperature
[S].


[8]GB/T 30069.2—2016,金属材料高应变速率拉伸试验第2部分:液压伺服型与其他类型试验系统
[S].

GB/T 30069.2—2016, Metallic materials—Tensile testing at high strain rates—Part 2: Servo-hydraulic and other test systems
[S].


[9]邓彬, 李庆芬, 吴远志,等. 高应变速率多向锻造对AZ31镁合金组织及耐腐蚀性能的影响
[J]. 锻压技术,2021,46(8): 7-11,25.

Deng B, Li Q F, Wu Y Z, et al. Influence of high strain rate multi-directional forging on microstructure and corrosion resistance property for AZ31 magnesium alloy
[J]. Forging & Stamping Technology, 2021,46(8): 7-11,25.


[10]Chen G, Huang L, Link T M,et al. Calibration and validation of GISSMO damage model for a 780 MPa third generation advanced high strength steel
[A]. SAE International.WCX SAE World Congress Experience
[C]. Detroit, 2020.


[11]郑鑫福,任鹏飞,郑崇嵩,等. HC260LAD+Z钢动态力学性能及其本构模型研究
[J]. 机电工程技术,2022,51(5):70-73,203. 

Zheng X F, Ren P F, Zheng C S, et al. Research on dynamic property and constitutive modeling for HC260LAD+Z steel
[J]. Mechanical & Electrical Engineering Technology, 2022, 51(5):70-73,203. 


[12]余立, 刘静, 葛锐,等. DP780双相钢在不同应变状态下的断裂特性及机理
[J]. 锻压技术, 2022, 47(10): 48-55.

Yu L, Liu J, Ge R, et al. Fracture characteristics and mechanism on DP780 dual-phase steel under different strain states
[J]. Forging & Stamping Technology, 2022, 47(10):48-55.


[13]潘利波,左治江,周文强,等. 双相钢的成形与断裂极限性能分析
[J]. 锻压技术,2021,46(7):185-189.

Pan L B,Zuo Z J,Zhou W Q,et al. Analysis on forming and fracture limit properties for dual phase steel
[J]. Forging & Stamping Technology,2021,46(7):185-189.
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9