网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
钢材混晶组织缺陷的形成机理及控制策略
英文标题:Formation mechanism and control strategy on mixed grain structure defect for steel
作者:郝彦英1 孙万利2 张朝磊2 刘运娜1 刘献达1 蔡纪升1 
单位:1.河钢集团石家庄钢铁有限责任公司 2.北京科技大学 碳中和研究院 
关键词:混晶 组织缺陷 部分再结晶 晶粒异常长大 热变形 
分类号:TG142.1
出版年,卷(期):页码:2023,48(7):1-6
摘要:

混晶是钢材极易产生的一种内部组织缺陷,对于钢材的微观组织和综合力学性能有很大损害。消除混晶缺陷,实现组织均匀化控制是提升钢材综合性能的必然要求。首先明确了混晶的概念及其定量分析评价方法;其次结合已有的研究基础从钢材变形和加热过程出发揭示了混晶组织缺陷的形成机理,依据成因将其分为4类混晶组织以阐述混晶的特征,包括热变形时部分再结晶引起的混晶、低于临界变形量形变引起的混晶、组织均匀的钢材二次加热后出现的混晶和加热时异常不均匀长大引起的混晶;最后针对性地提出了有效控制策略,对于钢材生产过程提供理论性指导。

  Mixed grain is an internal microstructure defect that is easily produced in steel, which has great damage to the microstructure and comprehensive mechanical properties of steel. Eliminating mixed grain defect and realizing microstructure homogenization control are the inevitable requirements for improving the comprehensive performance of steel. Therefore, firstly, the concept of mixed grain and its quantitative analysis and evaluation method were clarified. Secondly, the formation mechanism of mixed grain structure defect was revealed from the deformation and heating process of steel combined with the existing research basis. Then, according to the causes, the characteristics of mixed grain were described in four kinds of categories, including the mixed grain caused by the partial recrystallization during thermal deformation, the mixed grain caused by the deformation below the critical deformation amount, the mixed grain after reheating of steel with uniform structure and the mixed grain caused by the abnormal uneven growth during heating. Finally, the effective control strategies were proposed to provide theoretical guidance for steel production process.

基金项目:
河北省重大科技成果转化专项项目(22281004Z);河钢集团重点科技项目计划(HG2022114)
作者简介:
郝彦英(1971-),女,硕士,教授级高级工程师 E-mail:cnhao1999@126.com 通信作者:张朝磊(1984-),男,博士,副教授 E-mail:zhangchaolei@ustb.edu.cn
参考文献:

[1]Seong G K, Yong B P. Grain boundary segregation, solute drag and abnormal grain growth [J]. Acta Materialia, 2008, 56(15): 3739-3753.


[2]刘吉猛,黄烁,张晓敏,等.GH2132合金混晶条带组织分析及其对力学性能影响[J].钢铁,202257(6)110-119.


Liu J M, Huang S, Zhang X M, et al. Microstructure analysis of GH2132 alloy bandtyped mixed grain structure and its effect on mechanical properties[J]. Iron & Steel, 2022, 57(6): 110-119.


[3]Yang H L, Xu G, Wang L, et al. A study of growth of austenite grains in a steel microalloyed with Ti and Nb[J]. Metal Science and Heat Treatment, 2017, 59(1): 8-13.


[4]徐晓文,刘亮.湘钢ML40Cr钢线材表面混晶原因分析及控制[J].山东冶金,201941(6)24-25.


Xu X W, Liu L. Analysis and control of mixed crystal of ML40Cr at Xianggang[J]. Shandong Metallurgy, 2019, 41(6): 24-25.


[5]莫伟灵.热加工工艺对奥氏体本质晶粒度的影响[J].特殊钢,1980(2)94-102.


Mo W L. Effect of hot working process on the grain size of austenite[J]. Special Steel, 1980, (2): 94-102.


[6]俞雁,谢利群,高吉祥,等.CSP工艺热轧钢板显微组织混晶问题分析[J].冶金丛刊,20088(4)10-12.


Yu Y, Xie L Q, Gao J X, et al. Analysis on mixedgrains microstructure of hot rolled strip in CSP line[J]. Metallurgical Collections, 2008, 8(4): 10-12.


[7]于爽.变形温度对钢板混晶组织的影响分析[J].山东冶金,201638(3)40-42.


Yu S. Analysis of the influence of deformation temperature on the mixed grain structure of steel plate[J]. Shandong Metallurgy, 2016, 38(3): 40-42.


[8]田秀刚,冯晓勇,宋晓娟.超低碳IF热轧带钢表面混晶的分析与控制[J].河北冶金,2018(6)47-4931.


Tian X G, Feng X Y, Song X J. Analysis and control of surface mixed crystal in ultralow carbon hot strip steel[J]. Hebei Metallurgy, 2018, (6): 47-4931.


[9]于爽.变形量对钢板混晶组织的影响分析[J].山东冶金,201537(4)42-44.


Yu S. Analysis of the influence of deformation amount on the mixed grain structure of steel plate[J]. Shandong Metallurgy, 2015, 37(4): 42-44.


[10]Pradhan S K, Mandal S, Athreya C N, et al. Influence of processing parameters on dynamic recrystallization and the associated annealing twin boundary evolution in a nickel base superalloy[J]. Materials Science and Engineering: A, 2017, 70049-58.


[11]胡德林.奥氏体混晶的形成与消除[J].热加工工艺,1986(2)13-18.


Hu D L. Formation and elimination of austenite mixed grain[J]. Hot Working Technology, 1986, (2): 13-18.


[12]刘秀莲,班君,罗燕,等.消除8Cr4Mo4V钢“混晶”试验研究[J].热加工工艺,201847(14)165-168.


Liu X L, Ban J, Luo Y,et al. Experimental study on elimination of mixed grain of 8Cr4Mo4V steel[J]. Hot Working Technology, 2018, 47(14): 165-168.


[13]Li Y Q, Shen P, Zhang H M, et al. Deformation heterogeneity induced coarse grain refinement of the mixedgrain structure of 316LN steel through limited deformation condition[J]. Materials & Design, 2021, 210: 110057.


[14]常铁军,马茂元.钢的混晶程度评价方法探讨[J].理化检验物理分册,198925(1)40-41.


Chang T J, Ma M Y. Discussion on the evaluation method of the degree of grain mixing of steel[J]. Physical Testing and Chemical Analysis Part A:Physical Testing, 1989, 25(1): 40-41.


[15]Shang X Q, Zhang H M, Cui Z S, et al. A multiscale investigation into the effect of grain size on void evolution and ductile fracture: Experiments and crystal plasticity modeling[J]. International Journal of Plasticity, 2020, 125: 133-149.


[16]JIS G0551:2020,鋼-結晶粒度の顕微鏡試験方法金属平均晶粒度测定方法[S].


JIS G0551:2020,Steelgrain microscopy test method metal mean grain size determination method [S].


[17]GB/T 63942017,金属平均晶粒度测定方法[S].


GB/T 63942017, Determination of estimating the average grain size of metal[S].


[18]董芳.锻造及预备热处理工艺对18Cr2Ni4WA锻件本质晶粒度的影响[J].金属加工:热加工,2017(11)61-64.


Dong F. Effect of forging and preparatory heat treatment process on the particle size of 18Cr2Ni4WA forgings[J]. Metal Working, 2017, (11): 61-64.


[19]Wang G Q, Chen M S, Li H B, et al. Methods and mechanisms for uniformly refining deformed mixed and coarse grains inside a solutiontreated Nibased superalloy by twostage heat treatment[J]. Journal of Materials Science & Technology, 2021, 77:47-57.


[20]李波,陈方玉,陈胜,等.20CrMnTi棒材表面混晶及消除方法[J].武汉职业技术学院学报,201312(3)107-108112.


Li B, Chen F Y, Chen S, et al. On methods of eliminating mixed crystal on 20CrMnTi work piece[J]. Journal of Wuhan Polyiechnic, 2013, 12(3): 107-108112.


[21]张继永,李红俊,申震,等.700 MPa级汽车大梁钢混晶组织问题研究[J].轧钢,202138(1)84-88.


Chen J J, Li H J, Shen Z, et al. Research of mixed crystal structure of 700 MPa grade plate for automobile beam[J]. Steel Rolling, 2021, 38(1): 84-88.


[22]李绍杰,樊一丁,黄胜永.AlTiNb微合金化对ZF7渗碳钢晶粒混晶的影响[J].特殊钢,201334(2)52-54.


Li S J, Fan Y D, Huang S Y. Effect of Al, Ti, Nb microalloying on mixed grain size of casehardened steel ZF7[J]. Special Steel, 2013, 34(2): 52-54.


[23]樊璐璐,刘晓飞,翟月雯,等.成形全过程奥氏体混晶预测模型及其工程应用[J].锻压技术,202146(11)49-61.


Fan L LLiu X FZhai Y Wet al. Prediction model of austenitic mixed grains in the whole forming process and its application in engineering[J]. Forging & Stamping Technology, 2021, 46(11):49-61.


[24]王倩,姜敏凤,冯勇,等.Q460C钢板的混晶组织特征和成因探讨[J].山东冶金,201133(1)34-3540.


Wang Q, Jiang M F, Feng Y, et al. Discussion on the characteristics and genesis of mixed grain structure for Q460C plate[J]. Shandong Metallurgy, 2011, 33(1): 34-3540.


[25]何建中,刘雅政,常大勇,等.CSP生产X60管线钢的化学成分和轧制工艺对混晶的影响[J].特殊钢,2005(5)57-59.


He J Z, Liu Y Z, Chang D Y, et al. Effect of chemical composition and rolling process on mixed grain of CSP produced X60 pipeline steel[J]. Special Steel, 2005, (5): 57-59.


[26]宗云,赵莉萍,麻永林,等.X60钢在CSP热轧过程中的组织演变与混晶现象[J].上海金属,2006(2)43-47.


Zong Y, Zhao L P, Ma Y L, et al. Microstructure evolution and mixed grains phenomenon of X60 steel during hot rolling in CSP[J]. Shanghai Metals, 2006, (2): 43-47.


[27]刘清友,董瀚,孙新军,等.CSP工艺中含Nb钢的混晶问题及改善方法[J].钢铁,2003(8)16-19.


Liu Q Y, Dong H, Sun X J, et al. The mixedgrains microstructure of nb microalloyed strip and eliminating methods in CSP processing[J]. Iron & Steel, 2003, (8): 16-19.


[28]卢文增,张卫东.研究混晶的定量金相新方法[J].物理测试,1990(4)48-50.


Lu W Z, Zhang W D. A new method for quantitative metallographic study of grain mixing[J]. Physics Examination and Testing, 1990, (4): 48-50.


[29]Tan L M, Huang Z W, Liu F, et al. Effects of strain amount and strain rate on grain structure of a novel high Co nickelbased polycrystalline superalloy[J]. Materials & Design, 2017, 131: 60-68.


[30]刘靖,彭杰,张备,等.X80管线钢热轧过程再结晶规律研究[J].天津冶金,2011(1)23-2549.


Liu J, Peng J, Zhang B, et al. Study on X80 pipeline steel recrystallization law in hot rolling process[J]. Tianjin Metallurgy, 2011, (1): 23-2549.


[31]Doherty R D, Hughes D A, Humphreys F J, et al. Current issues in recrystallization: A review[J]. Materials Science and Engineering: A, 1997, 238(2): 219-274.


[32]杨勇,周乐育,蒋鹏,等.模锻变形对曲轴用非调质钢1538MV显微组织的影响[J].工程科学学报,201840(5)579-586.


Yang Y, Zhou L Y, Jiang P, et al. Influence of dieforging deformation on microstructure of 1538MV nonquenched and tempered steel for crankshaft[J]. Chinese Journal of Engineering, 2018, 40(5): 579-586.


[33]黄绪传,裴新华,薛军.连续变形与冷却工艺对低碳钢微观组织的影响[J].四川冶金,201840(2)9-12.


Huang X C, Pei X H, Xue J. Influence of continuous deformation and cooling process on microstructure for low carbon steel[J]. Sichuan Metallurgy, 2018, 40(2): 9-12.


[34]PousRomero H, Lonardelli I, Cogswell D, et al. Austenite grain growth in a nuclear pressure vessel steel[J]. Materials Science and Engineering: A, 2013, 567:72-79.


[35]Azarbarmas M, AghaieKhafri M, Cabrera J M, et al. Dynamic recrystallization mechanisms and twining evolution during hot deformation of Inconel 718[J]. Materials Science and Engineering: A, 2016, 678: 137-152.


[36]罗兴壮,罗庆革,兰钢,等.ML08Al线材混晶组织原因分析与改进措施[J].轧钢,202037(3)93-96.


Luo X Z, Luo Q G, Lan G, et al. Causes analysis of mixedgrain microstructure of ML08Al wire and its countermeasures[J]. Steel Rolling, 2020, 37(3): 93-96.


[37]王欢,胡佳丽,张朝磊,等.履带销轴用1E1158M钢的奥氏体混晶情况[J].钢铁,202055(11)126-132139.


Wang H, Hu J L, Zhang C L, et al. Mixed crystal of austenite grain size in track pins 1E1158M steel[J]. Iron & Steel, 2020, 55(11): 126-132139.


[38]宋海刚.F91钢的混晶原因以及消除方法[J].中国金属通报,2017(8)71-72.


Song H G. Causes of crystallization of F91 steel and how to eliminate them[J]. China Metal Bulletin, 2017, (8): 71-72.


[39]万文华,徐乐钱,沙鹏飞,等.AISI1008圆钢混晶原因分析及有限元模拟和工艺改进[J].特殊钢,202142(2)42-45.


Wan W H, Xu L Q, Sha P F, et al. Analysis and finite element simulation of mixed grain of round steel AISI1008 and process improvement[J]. Special Steel, 2021, 42(2): 42-45.


[40]孙后金,张永安,张三平.22CrMoH齿轮钢奥氏体晶粒度影响因素及混晶原因分析[J].山东冶金,201941(6)29-31.


Sun H J, Zhang Y A, Zhang S P. Influencing factors of austenite grain size and analysis on mixed crystal of 22CrMoH gear steel[J]. Shandong Metallurgy, 2019, 41(6): 29-31.


[41]齐建军,李绍杰.铝氮比对轿车用渗碳钢晶粒混晶的影响[J].河北冶金,2015(2)1-4.


Qi J J, Li S J. Influence of aluminumnitrogen rate on mixedg rain structure of 20MnCr5 carburizing steel for car[J]. Hebei Metallurgy, 2015, (2): 1-4.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9