[1]Seong G K, Yong B P. Grain boundary segregation, solute drag and abnormal grain growth [J]. Acta Materialia, 2008, 56(15): 3739-3753.
[2]刘吉猛,黄烁,张晓敏,等.GH2132合金混晶条带组织分析及其对力学性能影响[J].钢铁,2022,57(6):110-119.
Liu J M, Huang S, Zhang X M, et al. Microstructure analysis of GH2132 alloy bandtyped mixed grain structure and its effect on mechanical properties[J]. Iron & Steel, 2022, 57(6): 110-119.
[3]Yang H L, Xu G, Wang L, et al. A study of growth of austenite grains in a steel microalloyed with Ti and Nb[J]. Metal Science and Heat Treatment, 2017, 59(1): 8-13.
[4]徐晓文,刘亮.湘钢ML40Cr钢线材表面混晶原因分析及控制[J].山东冶金,2019,41(6):24-25.
Xu X W, Liu L. Analysis and control of mixed crystal of ML40Cr at Xianggang[J]. Shandong Metallurgy, 2019, 41(6): 24-25.
[5]莫伟灵.热加工工艺对奥氏体本质晶粒度的影响[J].特殊钢,1980,(2):94-102.
Mo W L. Effect of hot working process on the grain size of austenite[J]. Special Steel, 1980, (2): 94-102.
[6]俞雁,谢利群,高吉祥,等.CSP工艺热轧钢板显微组织混晶问题分析[J].冶金丛刊,2008,8(4):10-12.
Yu Y, Xie L Q, Gao J X, et al. Analysis on mixedgrains microstructure of hot rolled strip in CSP line[J]. Metallurgical Collections, 2008, 8(4): 10-12.
[7]于爽.变形温度对钢板混晶组织的影响分析[J].山东冶金,2016,38(3):40-42.
Yu S. Analysis of the influence of deformation temperature on the mixed grain structure of steel plate[J]. Shandong Metallurgy, 2016, 38(3): 40-42.
[8]田秀刚,冯晓勇,宋晓娟.超低碳IF热轧带钢表面混晶的分析与控制[J].河北冶金,2018,(6):47-49,31.
Tian X G, Feng X Y, Song X J. Analysis and control of surface mixed crystal in ultralow carbon hot strip steel[J]. Hebei Metallurgy, 2018, (6): 47-49,31.
[9]于爽.变形量对钢板混晶组织的影响分析[J].山东冶金,2015,37(4):42-44.
Yu S. Analysis of the influence of deformation amount on the mixed grain structure of steel plate[J]. Shandong Metallurgy, 2015, 37(4): 42-44.
[10]Pradhan S K, Mandal S, Athreya C N, et al. Influence of processing parameters on dynamic recrystallization and the associated annealing twin boundary evolution in a nickel base superalloy[J]. Materials Science and Engineering: A, 2017, 700:49-58.
[11]胡德林.奥氏体混晶的形成与消除[J].热加工工艺,1986,(2):13-18.
Hu D L. Formation and elimination of austenite mixed grain[J]. Hot Working Technology, 1986, (2): 13-18.
[12]刘秀莲,班君,罗燕,等.消除8Cr4Mo4V钢“混晶”试验研究[J].热加工工艺,2018,47(14):165-168.
Liu X L, Ban J, Luo Y,et al. Experimental study on elimination of mixed grain of 8Cr4Mo4V steel[J]. Hot Working Technology, 2018, 47(14): 165-168.
[13]Li Y Q, Shen P, Zhang H M, et al. Deformation heterogeneity induced coarse grain refinement of the mixedgrain structure of 316LN steel through limited deformation condition[J]. Materials & Design, 2021, 210: 110057.
[14]常铁军,马茂元.钢的混晶程度评价方法探讨[J].理化检验物理分册,1989,25(1):40-41.
Chang T J, Ma M Y. Discussion on the evaluation method of the degree of grain mixing of steel[J]. Physical Testing and Chemical Analysis Part A:Physical Testing, 1989, 25(1): 40-41.
[15]Shang X Q, Zhang H M, Cui Z S, et al. A multiscale investigation into the effect of grain size on void evolution and ductile fracture: Experiments and crystal plasticity modeling[J]. International Journal of Plasticity, 2020, 125: 133-149.
[16]JIS G0551:2020,鋼-結晶粒度の顕微鏡試験方法金属平均晶粒度测定方法[S].
JIS G0551:2020,Steelgrain microscopy test method metal mean grain size determination method [S].
[17]GB/T 6394—2017,金属平均晶粒度测定方法[S].
GB/T 6394—2017, Determination of estimating the average grain size of metal[S].
[18]董芳.锻造及预备热处理工艺对18Cr2Ni4WA锻件本质晶粒度的影响[J].金属加工:热加工,2017,(11):61-64.
Dong F. Effect of forging and preparatory heat treatment process on the particle size of 18Cr2Ni4WA forgings[J]. Metal Working, 2017, (11): 61-64.
[19]Wang G Q, Chen M S, Li H B, et al. Methods and mechanisms for uniformly refining deformed mixed and coarse grains inside a solutiontreated Nibased superalloy by twostage heat treatment[J]. Journal of Materials Science & Technology, 2021, 77:47-57.
[20]李波,陈方玉,陈胜,等.20CrMnTi棒材表面混晶及消除方法[J].武汉职业技术学院学报,2013,12(3):107-108,112.
Li B, Chen F Y, Chen S, et al. On methods of eliminating mixed crystal on 20CrMnTi work piece[J]. Journal of Wuhan Polyiechnic, 2013, 12(3): 107-108,112.
[21]张继永,李红俊,申震,等.700 MPa级汽车大梁钢混晶组织问题研究[J].轧钢,2021,38(1):84-88.
Chen J J, Li H J, Shen Z, et al. Research of mixed crystal structure of 700 MPa grade plate for automobile beam[J]. Steel Rolling, 2021, 38(1): 84-88.
[22]李绍杰,樊一丁,黄胜永.Al、Ti、Nb微合金化对ZF7渗碳钢晶粒混晶的影响[J].特殊钢,2013,34(2):52-54.
Li S J, Fan Y D, Huang S Y. Effect of Al, Ti, Nb microalloying on mixed grain size of casehardened steel ZF7[J]. Special Steel, 2013, 34(2): 52-54.
[23]樊璐璐,刘晓飞,翟月雯,等.成形全过程奥氏体混晶预测模型及其工程应用[J].锻压技术,2021,46(11):49-61.
Fan L L,Liu X F,Zhai Y W,et al. Prediction model of austenitic mixed grains in the whole forming process and its application in engineering[J]. Forging & Stamping Technology, 2021, 46(11):49-61.
[24]王倩,姜敏凤,冯勇,等.Q460C钢板的混晶组织特征和成因探讨[J].山东冶金,2011,33(1):34-35,40.
Wang Q, Jiang M F, Feng Y, et al. Discussion on the characteristics and genesis of mixed grain structure for Q460C plate[J]. Shandong Metallurgy, 2011, 33(1): 34-35,40.
[25]何建中,刘雅政,常大勇,等.CSP生产X60管线钢的化学成分和轧制工艺对混晶的影响[J].特殊钢,2005,(5):57-59.
He J Z, Liu Y Z, Chang D Y, et al. Effect of chemical composition and rolling process on mixed grain of CSP produced X60 pipeline steel[J]. Special Steel, 2005, (5): 57-59.
[26]宗云,赵莉萍,麻永林,等.X60钢在CSP热轧过程中的组织演变与混晶现象[J].上海金属,2006,(2):43-47.
Zong Y, Zhao L P, Ma Y L, et al. Microstructure evolution and mixed grains phenomenon of X60 steel during hot rolling in CSP[J]. Shanghai Metals, 2006, (2): 43-47.
[27]刘清友,董瀚,孙新军,等.CSP工艺中含Nb钢的混晶问题及改善方法[J].钢铁,2003,(8):16-19.
Liu Q Y, Dong H, Sun X J, et al. The mixedgrains microstructure of nb microalloyed strip and eliminating methods in CSP processing[J]. Iron & Steel, 2003, (8): 16-19.
[28]卢文增,张卫东.研究混晶的定量金相新方法[J].物理测试,1990,(4):48-50.
Lu W Z, Zhang W D. A new method for quantitative metallographic study of grain mixing[J]. Physics Examination and Testing, 1990, (4): 48-50.
[29]Tan L M, Huang Z W, Liu F, et al. Effects of strain amount and strain rate on grain structure of a novel high Co nickelbased polycrystalline superalloy[J]. Materials & Design, 2017, 131: 60-68.
[30]刘靖,彭杰,张备,等.X80管线钢热轧过程再结晶规律研究[J].天津冶金,2011,(1):23-25,49.
Liu J, Peng J, Zhang B, et al. Study on X80 pipeline steel recrystallization law in hot rolling process[J]. Tianjin Metallurgy, 2011, (1): 23-25,49.
[31]Doherty R D, Hughes D A, Humphreys F J, et al. Current issues in recrystallization: A review[J]. Materials Science and Engineering: A, 1997, 238(2): 219-274.
[32]杨勇,周乐育,蒋鹏,等.模锻变形对曲轴用非调质钢1538MV显微组织的影响[J].工程科学学报,2018,40(5):579-586.
Yang Y, Zhou L Y, Jiang P, et al. Influence of dieforging deformation on microstructure of 1538MV nonquenched and tempered steel for crankshaft[J]. Chinese Journal of Engineering, 2018, 40(5): 579-586.
[33]黄绪传,裴新华,薛军.连续变形与冷却工艺对低碳钢微观组织的影响[J].四川冶金,2018,40(2):9-12.
Huang X C, Pei X H, Xue J. Influence of continuous deformation and cooling process on microstructure for low carbon steel[J]. Sichuan Metallurgy, 2018, 40(2): 9-12.
[34]PousRomero H, Lonardelli I, Cogswell D, et al. Austenite grain growth in a nuclear pressure vessel steel[J]. Materials Science and Engineering: A, 2013, 567:72-79.
[35]Azarbarmas M, AghaieKhafri M, Cabrera J M, et al. Dynamic recrystallization mechanisms and twining evolution during hot deformation of Inconel 718[J]. Materials Science and Engineering: A, 2016, 678: 137-152.
[36]罗兴壮,罗庆革,兰钢,等.ML08Al线材混晶组织原因分析与改进措施[J].轧钢,2020,37(3):93-96.
Luo X Z, Luo Q G, Lan G, et al. Causes analysis of mixedgrain microstructure of ML08Al wire and its countermeasures[J]. Steel Rolling, 2020, 37(3): 93-96.
[37]王欢,胡佳丽,张朝磊,等.履带销轴用1E1158M钢的奥氏体混晶情况[J].钢铁,2020,55(11):126-132,139.
Wang H, Hu J L, Zhang C L, et al. Mixed crystal of austenite grain size in track pins 1E1158M steel[J]. Iron & Steel, 2020, 55(11): 126-132,139.
[38]宋海刚.F91钢的混晶原因以及消除方法[J].中国金属通报,2017,(8):71-72.
Song H G. Causes of crystallization of F91 steel and how to eliminate them[J]. China Metal Bulletin, 2017, (8): 71-72.
[39]万文华,徐乐钱,沙鹏飞,等.AISI1008圆钢混晶原因分析及有限元模拟和工艺改进[J].特殊钢,2021,42(2):42-45.
Wan W H, Xu L Q, Sha P F, et al. Analysis and finite element simulation of mixed grain of round steel AISI1008 and process improvement[J]. Special Steel, 2021, 42(2): 42-45.
[40]孙后金,张永安,张三平.22CrMoH齿轮钢奥氏体晶粒度影响因素及混晶原因分析[J].山东冶金,2019,41(6):29-31.
Sun H J, Zhang Y A, Zhang S P. Influencing factors of austenite grain size and analysis on mixed crystal of 22CrMoH gear steel[J]. Shandong Metallurgy, 2019, 41(6): 29-31.
[41]齐建军,李绍杰.铝氮比对轿车用渗碳钢晶粒混晶的影响[J].河北冶金,2015,(2):1-4.
Qi J J, Li S J. Influence of aluminumnitrogen rate on mixedg rain structure of 20MnCr5 carburizing steel for car[J]. Hebei Metallurgy, 2015, (2): 1-4.
|