网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
GH4169高温合金复合热压缩界面愈合与界面氧化物研究
英文标题:Research on interfacial healing and interfacial oxides for superalloy GH4169 composite hot compression
作者:张鑫1 白亚冠1 聂义宏2 寇金凤1 祝志超1 王宝忠2 
单位:1. 天津重型装备工程研究有限公司 2. 中国第一重型机械股份公司 
关键词:GH4169高温合金 复合热压缩 构筑成形 界面愈合 界面氧化物 
分类号:TG306;TG316.2
出版年,卷(期):页码:2023,48(7):35-44
摘要:

 由于成分偏析和冶炼能力的限制,大型GH4169高温合金锻件难以实现国产化制造。利用小坯料生产大尺寸锻件的构筑成形技术可实现大型高温合金锻件的匀质化制造。通过GH4169高温合金的复合热压缩试验,研究了变形工艺参数对GH4169高温合金构筑成形界面愈合情况和界面氧化物的影响规律,得到了GH4169高温合金构筑成形的最佳工艺参数。结果表明:在始锻温度、采用较小的应变速率、压缩量大于50%,并在压缩后保温保压一定时间的综合条件下,界面愈合的效果最好,应避免在高应变速率+大变形量的条件下进行构筑成形;在高温下经过较长时间的热处理后,界面内部的氧化铝未明显扩散,从表面沿着界面向内发生严重的氮化反应,且界面边缘出现缝隙。

 Due to the limitation of composition segregation and smelting capacity, it is difficult to realize nationalized manufacturing of large superalloy GH4169 forgings, and the additive forming technology of producing large-size forgings from small blanks can realize the homogenized manufacturing for large superalloy forgings. Therefore, through the composite hot compression experiment of superalloy GH4169, the influence laws of deformation process parameters on the interfacial healing and interfacial oxides of superalloy GH4169 additive forming were studied, and the optimal process parameters of superalloy GH4169 additive forming were obtained. The results show that under the comprehensive conditions of initial forging temperature, smaller strain rate,compression amount more than 50% and heat preservation and pressure holding for a certain period of time after compression, the interfacial healing effect is the best, and the additive forming should be avoided under the condition of high strain rate and large deformation amount. After a long time of heat treatment at high temperature, the alumina inside the interface do not diffuse significantly, the severe nitriding reaction occurs from the surface along the interface inward, and gaps appear at the edges of interface.

基金项目:
国家重点研发计划(2021YFB3704102);黑龙江省自然科学基金杰出青年项目(JQ2021E007)
作者简介:
作者简介:张鑫(1990-),男,硕士,工程师 E-mail:zhangxin_zxc@163.com
参考文献:

[1]聂义宏, 白亚冠, 寇金凤, 等. 700 ℃超超临界汽轮机用镍基转子锻件的试制 [J]. 稀有金属材料与工程, 2021, 50(10): 3814-3818.


Nie Y H, Bai Y G, Kou J F, et al. Trial manufacturing of Nibase alloy rotor forging for 700 ℃ advanced USC power plant [J]. Rare Metal Materials and Engineering, 2021, 50(10): 3814-3818.

[2]张鑫, 聂义宏, 许元涛. 93 t 321奥氏体不锈钢铸锭铸态组织研究 [J]. 一重技术, 2017, (2): 35-40.

Zhang X, Nie Y H, Xu Y T. Research on ascast microstructure of 93 t 321 austenitic stainless steel [J]. CFHI Technology, 2017, (2): 35-40.

[3]武晋, 胡海朝, 刘云, 等. 钢锭模棱数对典型钢锭凝固过程的影响研究 [J]. 热加工工艺, 2019, 48(3): 112-115.

Wu J, Hu H C, Liu Y, et al. Effect of ingot mould edgenumber on solidification process of typical ingot [J]. Hot Working Technology, 2019, 48(3): 112-115.

[4]时立佳, 曹志远, 季雪, 等. 转子锻件材料利用率的统计分析 [J]. 一重技术, 2015, (3): 45-48.

Shi L J, Cao Z Y, Ji X, et al. Statistical analysis on yield of the rotor forgings [J]. CFHI Technology, 2015, (3): 45-48.

[5]孙明月, 徐斌, 谢碧君, 等. 大锻件均质化构筑成形研究进展 [J]. 科学通报, 2020, 65(27): 3043-3058.

Sun M Y, Xu B, Xie B J, et al. Research advances on homogenization manufacturing of heavy components by metal additive forging [J]. Chinese Science Bulletin, 2020, 65(27): 3043-3058.

[6]李殿中, 孙明月, 徐斌, 等. 金属构筑成形方法 [P]. 中国: 201511027492.4, 2015-12-31.

Li D Z,Sun M Y, Xu B,et al. Metal construction forming method [P]. China: 201511027492.4, 2015-12-31.

[7]银伟, 任秀凤, 郑永强, 等. 轮带的构筑成形工艺与轧制工艺制造 [J]. 大型铸锻件, 2022, (1): 10-11.

Yin W, Ren X F, Zheng Y Q, et al. Manufacturing of wheel belt by the construction forming process and rolling process [J]. Heavy Casting and Forging, 2022, (1): 10-11.

[8]马东平, 张洪林, 王长军, 等. 某低温风洞用高强不锈钢弯刀小试件生产实践 [J]. 中国冶金, 2021, 31(3): 129-136.

Ma D P, Zhang H L, Wang C J, et al. Production practice of small scimitar specimen of high strength stainless steel for lowtemperature wind tunnel [J]. China Metallurgy, 2021, 31(3): 129-136.

[9]程喆. 2219铝合金环件构筑轧制成形规律与工艺方法研究 [D]. 武汉: 武汉理工大学, 2020.

Cheng Z. Research on Forming Law and Process Method of 2219 Aluminum Alloy Ring Additive Rolling [D]. Wuhan: Wuhan University of Technology, 2020.

[10]张鑫, 白亚冠, 寇金凤, 等. GH4169合金棒料挤压工艺模拟及试验研究 [J]. 一重技术, 2020, (6): 42-47.

Zhang X, Bai Y G, Kou J F, et al. Simulation and experimental research on extrusion process for GH4169 alloy bars [J]. CFHI Technology, 2020, (6): 42-47.

[11]罗鸿飞, 卢熠, 吴永安, 等. GH4169合金低压涡轮机匣异形环锻件胀形工艺 [J]. 锻压技术, 2021, 46(7): 27-33.

Luo H F,Lu Y,Wu Y A,et al. Bulging process for GH4169 alloy lowpressure turbine casing profile ring forgings [J]. Forging & Stamping Technology,2021, 46(7): 27-33.

[12]刘雪丽, 李和智, 卿颖, 等. 激光修复GH4169合金零部件关键技术研究 [J]. 稀有金属, 2021, 45(6): 758-762.

Liu X L, Li H Z, Qing Y, et al. Key technology of laser repairing GH4169 alloy parts [J]. Chinese Journal of Rare Metals,2021, 45(6): 758-762.

[13]金宏, 殷银银, 刘乐, 等. 航天用超大规格GH4169高温合金螺栓热镦工艺 [J]. 锻压技术, 2022, 47(6): 55-60.

Jin H, Yin Y Y, Liu L, et al. Hot upsetting process of supersized superalloy GH4169 bolts for aerospace [J]. Forging & Stamping Technology, 2022, 47(6): 55-60.

[14]高圣勇, 王一雯, 苏孺, 等. GH4169高温合金低周疲劳变形行为研究 [J]. 稀有金属, 2022, 46(3): 289-296.

Gao S Y, Wang Y W, Su R, et al. Lowcycle fatigue behavior of GH4169 superalloy [J]. Chinese Journal of Rare Metals, 2022, 46(3): 289-296.

[15]张鑫, 白亚冠, 聂义宏. 变形工艺参数对GH4169合金再结晶的影响 [J]. 热加工工艺, 2023, 52(5): 51-56.

Zhang X, Bai Y G, Nie Y H. Effect of deformation process parameters on recrystallization of GH4169 alloy [J]. Hot Working Technology, 2023, 52(5): 51-56.

[16]张勇, 李鑫旭, 韦康, 等. 三联熔炼GH4169合金大规格铸锭与棒材元素偏析行为 [J]. 金属学报, 2020, 56(8): 1123-1132.

 Zhang Y, Li X X, Wei K, et al. Element segregation in GH4169 superalloy largescale ingot and billet manufactured by triplemelting [J]. Acta Metallurgica Sinica, 2020, 56(8): 1123-1132.

[17]Xie B J, Sun M Y, Xu B, et al. Dissolution and evolution of interfacial oxides improving the mechanical properties of solid state bonding joints [J]. Materials and Design, 2018, 157(11): 437-446.

[18]Xie B J, Sun M Y, Xu B, et al. Oxidation of stainless steel in vacuum and evolution of surface oxide scales during hotcompression bonding [J]. Corrosion Science, 2019, 147(2): 41-52.

[19]张健杨. 重型燃气轮机IN718合金涡轮盘构筑成形机理及工艺研究 [D]. 合肥: 中国科学技术大学, 2019.

 Zhang J Y. Investigation of Bonding Mechanism and Process during Additive Forging of IN718 Alloy Turbine Disk Used in Heavy Duty Gas Turbine [D]. Hefei: University of Science and Technology of China, 2019.

[20]Zhang J Y, Sun M Y, Xu B, et al. Interfacial microstructural evolution and metallurgical bonding mechanisms for IN718 superalloy joint produced by hot compressive bonding [J]. Metallurgical and Materials Transactions, 2018, 49(5): 2152-2162.

[21]Zhang J Y, Xu B, Tariq N H, et a1. Effect of strain rate on plastic deformation bonding behavior of Nibased superalloys [J]. Journal of Materials Science and Technology, 2020, 40(5): 54-63.

[22]Zhang J Y, Xu B, Tariq N H, et a1. Microstructure evolutions and interfacial bonding behavior of Nibased superalloys during solid state plastic deformation bonding [J]. Journal of Materials Science and Technology, 2020, 46(11): 1-11.

[23]曾真, 张坤, 郭正洪, 等. 不同冷速对单向热压35CrMo钢连接界面上孔隙愈合的影响 [J]. 机械工程学报, 2021, 57(10): 169-177.

 Zeng Z, Zhang K, Guo Z H, et al. Effect of cooling rates on the porosity healing at joint interface of 35CrMo steel after unidirectional hot pressing [J]. Journal of Mechanical Engineering, 2021, 57(10): 169-177.

[24]周丽英. ODS钢构筑成形过程界面愈合机理研究 [D]. 合肥: 中国科学技术大学, 2019.

 Zhou L Y. Interface Healing Mechanism of Oxide Dispersion Strengthened Steels Produced by Additive Forging [D]. Hefei: University of Science and Technology of China, 2019.

[25]王家文, 王岩, 陈前, 等. GH4169合金动态再结晶的有限元模拟与试验研究 [J]. 粉末冶金材料科学与工程, 2014, 19(4): 499-507.

 Wang J W, Wang Y, Chen Q, et al. Thermal simulating experiment and finite element simulation of dynamic recrystallization of annealed GH4169 alloy [J]. Materials Science and Engineering of Powder Metallurgy, 2014, 19(4): 499-507.

[26]蔺永诚, 陈小敏, 陈明松. 镍基合金的热变形行为及智能热加工技术研究进展 [J]. 精密成形工程, 2021, 13(1): 1-18.

 Lin Y C, Chen X M, Chen M S. Recent development of hightemperature deformation behavior and intelligent processing of Nibased superalloy [J]. Journal of Netshape Forming Engineering, 2021, 13(1): 1-18.

[27]Yang X W, Li W Y, Feng Y, et al. Physical simulation of interfacial microstructure evolution for hot compression bonding behavior in linear friction welded joints of GH4169 superalloy [J]. Materials and Design, 2016, 104(8): 436-452.

[28]张洪林. 低温工程用高强高韧不锈钢大锻件构筑成形与组织性能控制 [D]. 合肥: 中国科学技术大学, 2021.

 Zhang H L. Additive Forging and Structureproperties Manipulation of A High Strengthtoughness Stainless Steel Heavy Forgings for Cryogenic Engineering [D]. Hefei: University of Science and Technology of China, 2021.

[29]门正兴, 马亚鑫, 周杰, 等. 核电压力容器SA508-3钢内部裂纹高温焊合试验 [J]. 锻压技术, 2017, 42(6): 159-163.

Men Z X, Ma Y X, Zhou J, et al. Bonding experiment of internal crack at high temperature for nuclear pressure vessels steel SA508-3[J]. Forging & Stamping Technology, 2017, 42(6): 159-163.

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9