网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
同步器齿套锻件漏工序检测系统
英文标题:Missing procedure detection system on synchronizer gear sleeve forgings
作者:黄飞宏 李兴成 王凯 
单位:江苏理工学院 机械工程学院 
关键词:机器视觉 同步器齿套锻件 漏工序检测 模板匹配 图像分割 
分类号:TP29
出版年,卷(期):页码:2023,48(7):202-211
摘要:

 同步器齿套锻件尺寸小,在加工过程中容易出现漏倒角、漏沟槽、漏铣齿等现象,需要人工检测出漏工序产品。传统的人眼识别困难且识别效率低、劳动强度大、产品成本高。设计了一套基于机器视觉的同步器齿套锻件漏工序检测系统。通过视觉检测装置,将原输送线上所拍摄的工件图像导入计算机,采用模板匹配法检测出漏工序产品,并将不合格产品进行分拣。实验结果表明:同步器齿套锻件漏工序检测系统的检测精度达到90%以上,检测机构总速度达到20 s左右。该系统能够代替人工完成对同步器齿套锻件漏工序的检测并分拣,提高了识别效率。

 The size of synchronizer gear sleeve forgings is small, and it is prone to have the phenomenon of missing chamfering, missing grooves, missing milling teeth,etc during the machining process, so it is necessary to manually detect the missing procedure products. However, the traditional human eye recognition is difficult and the recognition efficiency is low, the labor intensity is high, and the product cost is high. Therefore, a missing procedure detection system for the synchronizer gear sleeve forgings based on machine vision was designed, and through the visual detection device, the workpiece image captured on the original conveying line was imported into the computer. Then, the missing procedure products were detected by the template matching method, and the unqualified products were sorted. The experimental results show that the detection accuracy of the missing procedure detection system on the synchronizer gear sleeve forgings reaches more than 90%, and the total speed of the detection mechanism reaches about 20 s per piece. Thus, the system can replace the manual work to finish the detection and sorting of the missing procedure for the synchronizer gear sleeve forgings, and improve the identification efficiency.

基金项目:
国家自然科学基金资助项目(51905235);江苏省自然科学基金资助项目(BK20191037);江苏理工学院研究生实践创新计划(XSJCX21_25)
作者简介:
作者简介:黄飞宏(1998-),男,硕士研究生 E-mail:936784552@qq.com 通信作者:李兴成(1968-),男,博士,教授 E-mail:sgylxc@163.com
参考文献:

 [1]刘飞飞,王书昭,陈涛.提高同步器齿毂齿套装配效率的选配工艺[J].机械传动,2014,38(9):173-177.


Liu F F, Wang S Z, Chen T. Matchig process to improve the assembly efficiency for synchronizer gear hub and gear sleeve[J].Journal of Mechanical Transmission, 2014,38(9):173-177.

[2]张志刚,余晓霞,彭元平,等.同步器同步机理建模与结构影响因素分析[J].哈尔滨工业大学学报,2019,51(7):192-200.

Zhang Z G, Yu X X, Peng Y P, et al. Synchronization mechanism modeling and structural effect factors analysis of synchronizer[J].Journal of Harbin Institute of Technology, 2019,51(7):192-200.

[3]林钰珍,于大国,洪觉民. 同步器齿套挤齿工艺的有限元数值仿真[J]. 锻压技术,2021,46(6):133-141.

Lin Y Z,Yu D G,Hong J M. Finite element numerical simulation on gear extrusion process for synchronizer tooth sleeve[J]. Forging & Stamping Technology,2021,46(6):133-141.

[4]王进峰,张兵宇,问丛川,等.基于HALCON的四光源光度立体法金属表面缺陷检测方法[J].制造技术与机床,2022,(3):157-161.

Wang J F, Zhang B Y, Wen C C, et al. Detection approach of metal surface defects by fourlightsource photometric stereo method based on HALCON software[J].Manufacturing Technology & Machine Tool, 2022,(3):157-161.

[5]吴浩.基于机器视觉的铜条表面缺陷检测系统的研究[J].仪表技术与传感器,2016,(7):86-88,92.

Wu H. Research of copper bar surface defects inspection system based on machine vision[J].Instrument Technique and Sensor, 2016,(7):86-88,92.

[6]冯维,刘红帝,汤少靖,等.基于HDRI的高反光金属表面缺陷检测方法研究[J].仪表技术与传感器,2019,(8):112-116.

Feng W, Liu H D, Tang S J, et al. Research on defect detection method for highreflectivemetal surface based on HDRI[J].Instrument Technique and Sensor, 2019,(8):112-116.

[7]Zhang L P,Peng Y N,Yang H J, et al. Defect analysis and innovation design of synchronizer for clutchless automatic mechanical transmission[J]. Chinese Journal of Mechanical Engineering,2022,35(1):249-265.

[8]申红森.一种通过叠加动作步骤缩短设备节拍的方法[J].制造技术与机床,2011,(12):192-194.

Shen H S. Solution for reducing station cycle time by superposition cycle steps[J].Manufacturing Technology & Machine Tool, 2011,(12):192-194.

[9]张南,刘庆生,曾琦,等.基于热模锻压力机曲轴锻造自动化生产线的时序设计与优化[J].锻压技术,2022,47(1):140-145.

Zhang N, Liu Q S, Zeng Q, et al. Time sequence design and optimization on automatic production line for crankshaft forging based on hot die forging press[J].Forging & Stamping Technology, 2022,47(1):140-145.

[10]Shanmugapriya. Image segmentation on satellite based image using advanced watershed method[J]. International Journal of Innovative Technology and Exploring Engineering,2019,8(10):478-483.

[11]黄鹏,郑淇,梁超.图像分割方法综述[J].武汉大学学报:理学版,2020,66(6):519-531.

Huang P, Zheng Q, Liang C. Overview of image segmentation methods[J].Journal of Wuhan University: Natural Science Edition, 2020,66(6):519-531.

[12]吕宁,肖剑,高健,等.基于改进MRF的冲压件轮廓缺陷图像分割算法[J].锻压技术,2022,47(4):101-109.

Lyu N, Xiao J, Gao J, et al. Image segmentation algorithm on contour defects for stamping part based on improved MRF[J].Forging & Stamping Technology, 2022,47(4):101-109.

[13]刘好洁,杨建玺,赵远方,等.基于ROI的银触点模板匹配缺陷的检测法[J].机械设计与制造,2020,(2):195-198,202.

Liu H J, Yang J X, Zhao Y F, et al. A detection method for matching defects of silver contact template based on ROI[J].Machinery Design & Manufacture, 2020,(2):195-198,202.

[14]Han Y. Reliable template matching for image detection in vision sensor systems[J]. Sensors,2021,21(24):8176-8176.

[15]陈向阳,朱国力,黄海,等.基于机器视觉的钢拱架定位检测方法[J].机床与液压,2022,50(7):7-11.

Chen X Y, Zhu G L, Huang H, et al. Positioning and detection method of steel arches based on machine vision[J].Machine Tool & Hydraulics, 2022,50(7):7-11.

[16]杨桂华,唐卫卫,卢澎澎,等.基于机器视觉的芯片引脚测量及缺陷检测系统[J].电子测量技术,2021,44(18):136-142.

Yang G H, Tang W W, Lu P P, et al. Chip pin measurement and defect detection system based on machine vision[J].Electronic Measurement Technology, 2021,44(18):136-142.

[17]王宏丽,赵不贿,孙智权,等.基于HALCON的医疗袋缺陷检测[J].包装工程,2015,36(13):125-129.

Wang H L, Zhao B H, Sun Z Q, et al. Defect detection of medical bags based on HALCON[J]. Packaging Engineering, 2015,36(13):125-129.

[18]王江辉,吴小俊.基于形状轮廓特征的金字塔匹配算法[J].计算机工程与应用,2019,55(1):191-195.

Wang J H, Wu X J. 2D shape matching based on pyramid matching with contour features[J].Computer Engineering and Applications, 2019,55(1):191-195.

[19]Li Z G,Shu H Y,Zheng C B. Multiscale single image dehazing using laplacian and gaussian pyramids[J]. IEEE Transactions on Image Processing: A Publication of the IEEE Signal Processing Society,2021,30:9270-9279.

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9