[1]郭宇娟. 7050高强铝合金模锻工艺基础及应用研究[D].武汉:华中科技大学,2014.
Guo Y J. Study on Die-forging Technology and Application of 7050 High-strength Aluminum Alloy[D]. Wuhan:Huazhong University of Science & Technology,2014.
[2]马志民,刘佳,贾文太.车辆用7050铝合金多向锻造对其组织与性能的影响[J].兵器材料科学与工程,2018,41(5):70-73.
Ma Z M,Liu J,Jia W T. Effect of multidirectional forging on microstructure and properties of 7050 aluminum alloy for vehicles[J]. Ordnance Material Science and Engineering,2018,41(5):70-73.
[3]张含茹. 7050铝合金热态流变行为及其微观组织演变研究[D].济南:山东大学,2022.
Zhang H R. Study on Thermal Rheological Behavior and Microstructure Evolution of 7050 Aluminum Alloy[D]. Jinan: Shandong University,2022.
[4]吴秀江. 7050铝合金模锻件组织均匀性调控及其组织演变研究[D].秦皇岛:燕山大学,2021.
Wu X J. Study on the Microstructure Homogeneity Regulation and it′s Microstructure Evolution of 7050 Aluminum Die Forgings[D]. Qinhuangdao: Yanshan University,2021.
[5]刘伟,李忠文,李春明,等.7050铝合金热锻速度对再结晶及其性能的影响[J].热加工工艺,2018,47(5):34-37.
Liu W, Li Z W, Li C M, et al. Effects of hot forging speed on recrystallization and properties of 7050 aluminum alloy[J]. Hot Working Technology, 2018,47(5):34-37.
[6]徐显强,董显娟,徐勇,等.7050铝合金的蠕变行为研究[J].锻特种铸造及有色合金,2023,43(6):825-830.
Xu X Q, Dong X J, Xu Y, et al. Creep behavior of 7050 aluminum alloy[J]. Special Casting & Nonferrous Alloys, 2023,43(6):825-830.
[7]鲁法云,赵凤,赵业青,等.锻造变形量对7050合金组织和性能的影响[J].材料导报,2015,29(8):105-109,113.
Lu F Y, Zhao F, Zhao Y Q, et al. Effect of forging reduction on the microstructure and properties of 7050 aluminum alloy[J]. Materials Review,2015,29(8):105-109,113.
[8]吴道祥,周杰,张建生,等.7050铝合金航空锻件热锻成形穿流缺陷分析[J].华中科技大学学报:自然科学版,2015,43(4):69-73.
Wu D X, Zhou J, Zhang J S,et al. Analyzing partial draining of 7050 aluminum alloy aircraft forging after hot die forming[J]. Journal of Huazhong University of Science & Technology: Natural Science Edition ,2015,43(4):69-73.
[9]GB/T 228.1—2021,金属材料 拉伸试验第1部分:室温试验方法[S].
GB/T 228.1—2021,Metallic materials—Tensile testing—Part 1: Method of test at room temperature [S].
[10]王梦寒,黄龙,王瑞,等.基于响应面法的铝合金筋板锻件工艺参数多目标优化[J].材料科学与工艺,2014,22(1):123-128.
Wang M H, Huang L, Wang R, et al. Multi-objective optimization of process parameters by RSM for aluminium-alloy rib-web forgings[J]. Materials Science and Technology, 2014,22(1):123-128.
[11]李辉,杨锋,袁博. 基于响应曲面法的消失模铸造ZL102合金的力学性能[J]. 特种铸造及有色合金, 2019, 39(3):286-289.
Li H, Yang F, Yuan B. Mechanical properties of lost foam casting Al-Si alloy parts based on response surface method[J]. Special Casting and Nonferrous Alloys, 2019, 39(3): 286-289.
[12]黄俊, 陈子博, 刘其蒙, 等. 基于NSGA-II的离体皮肤组织激光融合工艺参数的多目标优化[J]. 中国激光, 2019, 46(2):199-205.
Huang J, Chen Z B, Liu Q M, et al. Multi-objective optimization for laser closure process parameters in vitro skin tissue based on NSGA-II[J]. Chinese Journal of Lasers, 2019, 46(2):199-205.
[13]付涛, 刘伟军, 赵吉宾. 基于NSGA-II算法的高强度模具钢切削参数优化方法[J]. 机械工程材料, 2013, 37(12): 85-91.
Fu T, Liu W J, Zhao J B. Parameters optimization in cutting of high-strength mould steel based on NSGA-II[J]. Materials for Mechanical Engineering, 2013, 37(12): 85-91.
|