网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
点阵强变形轧制镁/铝层合板波纹结合界面的形成
英文标题:Formation of corrugated bonding interface for Mg/Al laminate by lattice severe deformation rolling
作者:冯光1 2 3 郜豪杰1 张恒1 申依伦1 满亚谦1 
单位:1.太原理工大学 机械与运载工程学院 2.太原理工大学 先进金属复合材料成形技术与装备教育部 工程研究中心 3.太原理工大学 先进成形与制造技术中澳联合研究中心 
关键词:点阵强变形轧制 镁/铝层合板 波纹 结合界面 力学性能 
分类号:TG335.1
出版年,卷(期):页码:2023,48(8):110-117
摘要:

点阵强变形轧制(LSDR)原理对解决镁/铝层合板轧制过程中存在的结合强度低、翘曲和边裂严重等技术问题有明显优势,然而关于波纹结合界面的形成机理及特征尚缺少研究。通过有限元数值模拟分析了LSDR原理轧制下波纹辊对层合板的强非均匀变形作用,解释了波纹结合界面的形成特点和沿界面应变的分布规律,并通过轧制实验进行了验证。结果表明:LSDR原理轧制镁/铝层合板时,组元板尤其是镁合金板沿轧向(RD)和横向(TD)均经历了两次周期性变形,促使结合界面处沿两方向形成波纹状结构,且沿RD的波纹周期略大,沿TD的波纹周期略小。沿RD和TD的波纹结合界面形成特点和形态的不同,导致两方向的金属间化合物层分布与力学性能存在差异。研究内容为深入探索LSDR原理及制备高性能的镁/铝层合板提供了实验参考。

Lattice severe deformation rolling (LSDR) principle has obvious advantages in solving technical problems such as low bonding strength, warping and severe edge cracking in Mg/Al laminate rolling process, however, the formation mechanism and characteristics of corrugated bonding interface are still understudied. Therefore, the severe non-uniform deformation effect of corrugated roll on the laminate rolled under LSDR principle was analyzed by finite element numerical simulation, and the formation characteristics of corrugated bonding interface and the distribution laws of strain along the interface were explained, which were verified by rolling experiment. The results show that when the Mg/Al laminate is rolled by the LSDR principle, the component plate, especially the Mg alloy plate, undergoes two periodic deformations along the rolling direction (RD) and the transverse direction (TD), which promotes the formation of corrugated structure in the bonding interface along two directions, and the corrugated period is slightly larger along RD and is slightly smaller along TD. The difference in the formation characteristics and morphologies of corrugated bonding interface along RD and TD leads to the difference in the distributions and mechanical properties of intermetallic compound layer along two directions. Thus, the research content provides the experimental reference for the in-depth exploration of LSDR principle and the preparation of high-performance Mg/Al laminates.

基金项目:
国家自然科学基金资助项目 (52074190);山西省留学回国人员科技活动择优资助重点项目(20220007);山西省科技重大专项资助项目(20181101008);山西省研究生教育创新项目(2022Y202)
作者简介:
作者简介:冯光(1983-),男,博士,副教授,E-mail:feng_guang@yeah.net
参考文献:

[1]谢曼, 干勇, 王慧. 面向2035的新材料强国战略研究 [J]. 中国工程科学, 2020, 22(5): 1-9.


Xie M, Gan Y, Wang H. Research on new material power strategy by 2035 [J]. Strategic Study of CAE, 2020, 22(5): 1-9.

[2]Hu W, Ma Z W, Ji S D, et al. Improving the mechanical property of dissimilar Al/Mg hybrid friction stir welding joint by PIO-ANN [J]. Journal of Materials Science & Technology, 2020, 53(18): 41-52.

[3]王涛, 齐艳阳, 刘江林, 等. 金属层合板轧制复合工艺国内外研究进展 [J]. 哈尔滨工业大学学报, 2020, 52(6): 42-56.

Wang T, Qi Y Y, Liu J L, et al. Research progress of metal laminates roll bonding process at home and abroad [J]. Journal of Harbin Institute of Technology, 2020, 52(6): 42-56.

[4]张建军. Al/Mg/Al热轧复合板的制备及其微观组织和力学性能研究 [D]. 太原:太原理工大学, 2016.

Zhang J J. Preparation of Al/Mg/Al Liminated Composite Fabricated by Hot Rolled and Investigation of Microstructure and Mechanical Properties [D]. Taiyuan:Taiyuan University of Technology,2016.

[5]Nie H H, Liang W, Zheng L W, et al. The microstructure, texture and mechanical properties of the rolled Al/Mg/Al clad sheets [J]. Journal of Materials Engineering and Performance, 2016, 25(11): 4695-4705.

[6]Wang D Y, Cao X Q, Wang L F, et al. Influence of hot rolling on the interface microstructure and mechanical properties of explosive welded Mg/Al composite plates [J]. Journal of Materials Research, 2017, 32: 863-873.

[7]Jamaati R, Toroghinejad M R. Investigation of the parameters of the cold roll bonding (CRB) process [J]. Materials Science and Engineering: A, 2010, 527(9): 2320-2326.

[8]Huo P D,Li F,Wang Y, et al. Corrugated interface structure and formation mechanism of Al/Mg/Al laminate rolled by hard plate [J]. Transactions of Nonferrous Metals Society of China, 2023, 33(4): 1038-1053.

[9]Feng G, Wang L, Gao H J. Lattice severe deformation rolling(LSDR) for bimetal laminated composite preparation [J]. Materials and Manufacturing Processes, 2023, 38(4): 409-415.

[10]Li X B, Zu G Y, Wang P. Microstructural development and its effects on mechanical properties of Al/Cu laminated composite [J]. Transactions of Nonferrous Metals Society of China, 2015, 25(1): 36-45.

[11]ASTM E8/E8M—2013a, 金属材料拉伸试验方法 [S].

ASTM E8/E8M—2013a, Standard test methods for tension testing of metallic materials [S].

[12]Wang T, Wang Y L, Bian L P, et al. Microstructural evolution and mechanical behavior of Mg/Al laminated composite sheet by novel corrugated rolling and flat rolling [J]. Materials Science and Engineering:A, 2019, 765:138318.

[13]万祥明, 刘剑雄, 魏燕, 等. 热处理温度对Nb/Re层状复合材料界面结构及力学性能的影响 [J]. 稀有金属, 2022, 46(3): 324-330.

Wan X M, Liu J X, Wei Y, et al. Interface structure and mechanical properties of Nb/Re layered composites with different heat treatment temperature [J]. Chinese Journal of Rare Metals,2022, 46(3): 324-330.

[14]Wang P J, Chen Z J, Hu C, et al. Effects of annealing on the interfacial structures and mechanical properties of hot roll bonded Al/Mg clad sheets [J]. Materials Science and Engineering: A, 2020, 792: 139673.

[15]Li S, Luo C, Muhammad-Umar Bashir, et al. Interface structures and mechanical properties of corrugated+flat rolled and traditional rolled Mg/Al clad plates [J]. Rare Metals, 2021, 40: 2947-2955.

[16]Zhang N, Wang W X, Cao X Q, et al. The effect of annealing on the interface microstructure and mechanical characteristics of AZ31B/AA6061 composite plates fabricated by explosive welding [J]. Materials & Design, 2015, 65: 1100-1109.

[17]Xu Y, Ke L M, Ouyang S, et al. Precipitation behavior of intermetallic compounds and their effect on mechanical properties of thick plate friction stir welded Al/Mg joint [J]. Journal of Manufacturing Processes, 2021, 64(10): 1059-1069.

[18]Mao L H, Liu C M, Gao Y H, et al. Microstructure and mechanical anisotropy of the hot rolled Mg-8.1Al-0.7Zn-0.15Ag alloy [J]. Materials Science and Engineering: A, 2017, 701: 7-15.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9