[1]Stemper L, Tunes M A, Tosone R, et al. On the potential of aluminum crossover alloys[J]. Progress in Materials Science, 2022, 124: 100873.
[2]Li S S, Zhao Q, Liu Z Y, et al. A review of texture evolution mechanisms during deformation by rolling in aluminum alloys[J]. Journal of Materials Engineering and Performance, 2018, 27(7): 3350-3373.
[3]Zheng J, Pang Q, Hu Z L, et al. Recent progress on regulating strategies for the strengthening and toughening of high-strength aluminum alloys[J]. Materials, 2022, 15(13):4725.
[4]张小璐. 纳米结构6061铝合金的组织调控与性能优化[D].重庆:重庆大学, 2021.
Zhang X L. Tailoring the Microstructure and Mechanical Properties of Nanostructured 6061 Aluminum Alloy[D].Chongqing:Chongqing University,2021.
[5]王瑞红, 孙瑞霞. 汽车用6061铝合金板轧制变形组织及力学性能分析[J]. 热加工工艺, 2020, 49(11): 104-106,110.
Wang R H,Sun R X. Analysis of rolling deformation microstructure and mechanical properties of 6061 aluminum alloy plate for automobile[J]. Hot Working Technology, 2020, 49(11): 104-106,110.
[6]路林, 刘玥扬, 矫全宇. 汽车用6系铝合金及其焊接方法综述[J]. 焊接技术, 2020, 49(6): 1-4.
Lu L, Liu Y Y, Jiao Q Y. Overview of 6 series aluminum alloys for automobiles and its welding methods[J]. Welding Technology, 2020, 49(6): 1-4.
[7]王艺橦. 电-热-力耦合场下Al-Mg-Si合金的组织演变及强韧化机理研究[D].长春:吉林大学, 2020.
Wang Y T. Research on Microstructure Evolution and Strengthening-toughening Mechanism of Al-Mg-Si Alloy under Electric-thermal-strain Coupling Field[D]. Changchun:Jilin University, 2020.
[8]Ding F J, Jia X D, Hong T J, et al. Flow stress prediction model of 6061 aluminum alloy sheet based on GA-BP and PSO-BP neural networks[J]. Rare Metal Materials and Engineering, 2020, 49(6): 1840-1853.
[9]Bembalge O B, Panigrahi S K. Hot deformation behavior and processing map development of cryorolled AA6063 alloy under compression and tension[J]. International Journal of Mechanical Sciences, 2021, 191:106100.
[10]Ma Y, Du Z X, Cui X M, et al. Effect of cold rolling process on microstructure and mechanical properties of high strength beta titanium alloy thin sheets[J]. Progress in Natural Science:Materials International, 2018, 28(6): 711-717.
[11]Valdes-Tabernero M A, Sancho-Cadenas R, Sabirov I, et al. Effect of SPD processing on mechanical behavior and dynamic strain aging of an Al-Mg alloy in various deformation modes and wide strain rate range[J]. Materials Science and Engineering:A, 2017, 696: 348-359.
[12]Jeong M, Lee J, Han J H. Effects of hot asymmetric rolling on microstructure and formability of aluminum alloys[J]. Korean Journal of Materials Research, 2019, 29(10): 647-655.
[13]Amegadzie M Y, Bishop D P. Effect of asymmetric rolling on the microstructure and mechanical properties of wrought 6061 aluminum[J]. Materials Today Communications, 2020, 25:101283.
[14]Ko Y G, Hamad K. Annealing behavior of 6061 Al alloy subjected to differential speed rolling deformation[J]. Metals, 2017, 7(11):494.
[15]林凌峰, 袁鸽成, 杨濂, 等. 平均道次压下率对异步轧制—固溶6016铝合金板材显微组织的影响[J]. 金属热处理, 2022, 47(9): 36-41.
Lin L F, Yuan G C, Yang L, et al. Effect of average pass reduction on microstructure of asynchronous rolled-solution treated 6016 aluminum alloy sheet[J]. Heat Treatment of Metals, 2022, 47(9): 36-41.
[16]Jiang X J, Bai Y, Zhang L, et al. Termination of local strain concentration led to better tensile ductility in multilayered 2N/4N Al sheet[J]. Materials Science & Engineering:A, 2020, 782:139240.
[17]梅瑞斌, 史现利, 包立, 等. AZ91D镁合金热塑性行为及热辊轧制过程再结晶组织模拟[J]. 中国有色金属学报, 2022, 32(5): 1289-1301.
Mei R B, Shi X L, Bao L, et al. Plastic deformation of AZ91D magnesium alloy and recrystallization structure simulation in heated roll rolling[J]. The Chinese Journal of Nonferrous Metals, 2022, 32(5): 1289-1301.
[18]Zhang X, Wang X X, Zhang D K. Investigation into constitutive equation and hot compression deformation behavior of 6061 Al alloy[J]. Tehnicˇki Vjesnik, 2019, 26(5): 1376-1382.
[19]丛福官. 7B50铝合金厚板组织、性能及各向异性研究[D].沈阳:东北大学, 2018.
Cong F G. Research on Microstructure, Properties and Anisotropy of 7B50 Aluminium Alloy Sheet[D].Shenyang: Northeastern University, 2018.
[20]廖斌. 7055铝合金厚板的变形行为及热处理特性的基础研究[D].重庆:重庆大学, 2019.
Liao B. Basic Research on Deformation Behavior and Heat Treatment Characteristics of 7055 Aluminum Alloy Thick Plate[D]. Chongqing: Chongqing University, 2019.
[21]李海, 徐海峰, 王芝秀. 预处理对冷轧时效6156铝合金组织与性能的影响[J]. 稀有金属, 2022, 46(1): 17-26.
Li H, Xu H F, Wang Z X. Microstructures and tensile properties of cold-rolled and re-aged 6156 Al alloy by pre-treating[J]. Chinese Journal of Rare Metals,2022,46(1):17-26.
[22]Lebensohn R A, Tomé C N. A self-consistent anisotropic approach for the simulation of plastic-deformation and texture development of polycrystals:Application to zirconium alloys[J]. Acta Metallurgica et Materialia, 1993, 41(9): 2611-2624.
[23]Zhou C, Lin J B, He W H, et al. Tensile deformation simulation of extruded ZK60 alloy by VPSC model[J]. Rare Metal Materials and Engineering, 2022, 51(7): 2429-2435.
[24]蒋小娟, 李坤宏, 袁程, 等. 大型非等厚7075铝合金自由锻件残余应力消减研究[J]. 兵器材料科学与工程, 2022, 45(5): 108-115.
Jiang X J, Li K H, Yuan C, et al. Residual stress reduction of large non-equal thickness free forging part of 7075 aluminum alloy[J]. Ordnance Material Science and Engineering, 2022, 45(5): 108-115.
[25]Tanaka H,Nagai Y,Oguri Y, et al. Mechanical properties of 5083 aluminum alloy sheets produced by isothermal rolling[J]. Materials Transactions, 2007, 48(8):2008-2013.
[26]昌江郁, 陈送义, 陈康华, 等. 7056铝合金厚板轧制变形不均匀性的实验研究与数值模拟[J]. 中南大学学报:自然科学版, 2018, 49(8): 1914-1921.
Chang J Y, Chen S Y, Chen K H, et al. Numerical simulation and experimental investigation of rolling deformation inhomogeneity of 7056 aluminum alloy thick plate[J]. Journal of Central South University:Science and Technology, 2018, 49(8): 1914-1921.
[27]Mandal S, Gockel B T, Balachandran S, et al. Simulation of plastic deformation in Ti-5553 alloy using a self-consistent viscoplastic model[J]. International Journal of Plasticity, 2017, 94: 57-73.
[28]刘欢, 邓偲瀛, 宋鸿武, 等. 基于晶体塑性理论的Zr-4合金板冷轧变形织构演变[J]. 稀有金属材料与工程, 2021, 50(10): 3591-3599.
Liu H, Deng S Y, Song H W, et al. Texture evolution of Zr-4 alloy sheet during cold rolling based on crystal plasticity theory[J]. Rare Metal Materials and Engineering, 2021, 50(10): 3591-3599.
|