网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
Fe901激光熔覆层界面结合强度及断裂行为
英文标题:Interfacial bonding strength and fracture behavior for Fe901 laser cladding layer
作者:陈炜1  王泽铭1  曹一枢2  张小计2  张威2  陈春刚2 
单位:1. 江苏大学 机械工程学院  2. 无锡曙光精密工业有限公司 
关键词:激光熔覆层 界面结合强度 界面抗剪强度 断口形貌 断裂机制 
分类号:TG76
出版年,卷(期):页码:2023,48(8):144-150
摘要:

 为了研究H13热作模具钢再制造后基材与Fe901熔覆层的界面结合强度,以界面抗剪强度为指标对其进行了定量表征,分析了熔覆层各部分的显微组织,对断口形貌及断裂机制进行了分析,并利用有限元分析方法对界面的各种应力分布规律进行了分析。结果表明:熔覆层与基材形成了良好的冶金结合;最高界面抗剪强度为804.75 MPa,平均抗剪强度为779.73 MPa;通过断口形貌分析,界面的断裂类型为韧窝-准解理断裂的混合断裂形式;有限元分析表明,在剪切过程中界面的边缘存在较大的应力集中。熔覆层与基材具有很高的界面结合强度,在剪切过程中界面边缘由于发生较大的变形而导致应力集中,最先产生裂纹,导致界面破坏,进而发展为整个熔覆层断裂。

 To study the interface bonding strength between substrate and Fe901 cladding layer after remanufacturing of H13 hot mold steel,it was quantitatively characterized with the interfacial shear strength as the index, and the microstructure of each part for the cladding layer was analyzed. Then, the fracture morphology and the fracture mechanism were analyzed, and the various stress distribution laws of the interface were analyzed by finite element analysis method. The results show that the cladding layer and the substrate form a good metallurgical bonding, the highest interfacial shear strength is 804.75 MPa, and the average shear strength is 779.73 MPa. Through the fracture morphology analysis, the fracture type of the interface is a mixture fracture form of dimples and quasi-cleavage fracture. Finite element analysis shows that there is a large stress concentration at the edge of the interface during the shearing process. The cladding layer and the substrate have a very high interface bonding strength. During the shear process, the stress concentration occurs at the edge of the interface due to large deformation,and the cracks are first produced to cause the interface destruction, and then develop into the fracture of the entire cladding layer.

基金项目:
2022年度无锡市“太湖之光”科技攻关计划(产业化关键技术攻关)项目(WX0304B010301220019PD)
作者简介:
作者简介:陈炜(1965-),男,博士,教授,博士生导师,E-mail:chen_wei@ujs.edu.cn
参考文献:

[1]刘文浩, 陈燕, 周睿, 等. 再制造加工技术的研究进展[J]. 金刚石与磨料磨具工程, 2021, 41(4): 1-7.


Liu W H, Chen Y, Zhou R, et al. Research progress of remanufacturing technology [J]. Diamond & Abrasives Engineering, 2021,41(4): 1-7.

[2]封亚明, 何柏林, 江明明, 等. 表面技术在模具制造和修复中的应用[J]. 热加工工艺, 2018, 47(4): 30-34.

Feng Y M, He B L, Jiang M M, et al. Application of surface technology in manufacture and repair of die[J]. Hot Working Technology, 2018, 47(4): 30-34.

[3]李洪波, 高强强, 李康英,等. 表面激光熔覆H13/NiCr-Cr3C2复合粉末熔覆层性能研究[J].中国激光,2021,48(18):163-172.

Li H B, Gao Q Q, Li K Y, et al. Properties of surface laser cladding H13/NiCr-Cr3C2 composite powder cladding layer[J]. Chinese Journal of Lasers, 2021, 48(18): 163-172.

[4]谢发勤, 何鹏, 吴向清, 等. 钛合金表面激光熔覆技术的研究及展望[J]. 稀有金属材料与工程, 2022, 51(4): 1514-1524.

Xie F Q, He P, Wu X Q, et al. Research and prospect of laser cladding technology on titanium alloy surface[J]. Rare Metal Materials and Engineering, 2022, 51(4): 1514-1524.

[5]张津超, 石世宏, 龚燕琪, 等. 激光熔覆技术研究进展[J]. 表面技术, 2020, 49(10): 1-11.

Zhang J C, Shi S H, Gong Y Q, et al. Research progress of laser cladding technology[J]. Surface Technology, 2020, 49(10): 1-11.

[6]杨班权, 陈光南, 张坤, 等. 涂层/基体材料界面结合强度测量方法的现状与展望[J]. 力学进展, 2007, (1): 67-79.

Yang B Q, Chen G N, Zhang K, et al. A review on measurement methods for interfacial bonding strength between coating and substrate[J]. Advances in Mechanics, 2007, (1): 67-79.

[7]Telasang G, Majumdar J D, Padmanabham G, et al. Effect of laser parameters on microstructure and hardness of laser clad and tempered AISI H13 tool steel[J]. Surface & Coatings Technology, 2014, 258: 1108-1118.

[8]Wang Y B, Zhao S S, Gao W Y, et al. Microstructure and properties of laser cladding FeCrBSi composite powder coatings with higher Cr content[J]. Journal of Materials Processing Technology, 2014, 214(4): 899-905.

[9]He X, Song R G, Kong D J. Microstructures and properties of Ni/TiC/La2O3 reinforced Al based composite coatings by laser cladding[J]. Optics & Laser Technology, 2019, 117: 18-27.

[10]安相龙, 王玉玲, 姜芙林, 等. 搭接率对42CrMo激光熔覆层温度场和残余应力分布的影响[J]. 中国激光, 2021, 48(10): 95-106.

An X L, Wang Y L, Jiang F L, et al. Influence of lap ratio on temperature field and residual stress distribution of 42CrMo laser cladding[J]. Chinese Journal of Lasers, 2021, 48(10): 95-106.

[11]Li K Q, Li T, Ma M, et al. Laser cladding state recognition and crack defect diagnosis by acoustic emission signal and neural network[J]. Optics and Laser Technology, 2021, 142: 107161.

[12]Qi K, Yang Y, Hu G F, et al. Thermal expansion control of composite coatings on 42CrMo by laser cladding[J]. Surface & Coatings Technology, 2020, 397: 125983.

[13]Dai Q L, Luo C B, You F Y. Crack restraining methods and their effects on the microstructures and properties of laser cladded WC/Fe coatings[J]. Materials, 2018, 11(12): 2541.

[14]Lin Y H, Ping X L, Kuang J C, et al. Improving the microstructure and mechanical properties of laser cladded Ni-based alloy coatings by changing their composition: A review[J]. Reviews on Advanced Materials Science, 2020, 59(1): 340-351.

[15]Bidron G, Doghri A, Malot T, et al. Reduction of the hot cracking sensitivity of CM-247LC superalloy processed by laser cladding using induction preheating[J]. Journal of Materials Processing Technology, 2020, 277: 116461.

[16]Qi K, Yang Y, Sun R, et al. Effect of magnetic field on crack control of Co-based alloy laser cladding[J]. Optics & Laser Technology, 2021, 141: 107129.

[17]Karmakar D P, Muvvala G, Nath A K. Effect of scan strategy and heat input on the shear strength of laser cladded Stellite 21 layers on AISI H13 tool steel in as-deposited and heat treated conditions[J]. Surface & Coatings Technology, 2020, 384: 125331.

[18]马群双, 李亚江, 王娟, 等. 宽束激光熔覆Ni60/WC复合层显微组织及抗剪强度[J]. 焊接学报, 2016, 37(12): 49-52.

Ma Q S, Li Y J, Wang J, et al. Microstructure characteristics and shear strength of wideband laser Ni60 composite coatings reinforced with WC particle[J]. Transactions of the China Welding Institution, 2016, 37(12): 49-52.

[19]王东生, 田宗军, 段宗银, 等. 压片预置式激光多层熔覆厚纳米陶瓷涂层结合性能[J]. 中国激光, 2012, 39(2): 66-71.

Wang D S, Tian Z J, Duan Z Y, et al. Bonding strength of thick nanostructured ceramic coating by squash presetting type laser multi-layer cladding[J]. Chinese Journal of Lasers, 2012, 39(2): 66-71.

[20]何波, 王晨, 孙长青, 等. 预热下激光沉积TA15/GH4169梯度结构各梯度层组织及性能研究[J]. 稀有金属, 2021, 45(1): 19-26.

He B, Wang C, Sun C Q, et al. Microstructure and properties of gradient layers of laser deposited TA15/GH4169 gradient composite structure under preheating[J]. Chinese Journal of Rare Metals, 2021, 45(1): 19-26.

[21]钟群鹏, 赵子华. 断口学[M]. 北京: 高等教育出版社, 2006.

Zhong Q P, Zhao Z H. Fractography[M]. Beijing: Higher Education Press,2006.
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9