网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
考虑润滑粗糙界面的叶片辊轧机辊系非线性振动特性
英文标题:Nonlinear vibration characteristics on blade rolling mill roll system considering lubrication rough interface
作者:张瑜1 2 张跃智1 赵飞1 
单位:1.安阳工学院 机械工程学院2.安阳工学院 安阳市先进航空材料与加工技术重点实验室 
关键词:界面粗糙形貌 非线性振动 垂直振动 辊轧机 动力学特性 
分类号:O322
出版年,卷(期):页码:2023,48(8):185-193
摘要:

 针对粗糙形貌导致界面行为发生变化进而影响叶片辊轧机辊系动力学特性的问题,建立了综合考虑支撑轴承以及楔板的表面形貌影响的叶片辊轧机辊系的垂直振动模型,计算了不同粗糙形貌的楔板与轧辊的接触载荷以及支撑轴承的非线性接触刚度。采用数值积分法求解了叶片辊轧机辊系垂直振动的动力学方程,分析了界面粗糙形貌对轧机辊系动力学响应特性的影响。研究结果表明:叶片辊轧机辊系振动位移幅值随着分形维数的增大逐渐减小,振动频率幅值也随之减小,且系统出现次谐波振动,表现出多频率振动现象。研究结果为实现辊轧机系统垂直振动控制提供了理论依据。

 For the problem that the change of interface behavior caused by rough morphology affected the dynamic characteristics of blade rolling mill roll system, a vertical vibration model of blade rolling mill roll system considering the influences of support bearing and surface topography of wedge plate was established, and the contact loads between wedge plate with different rough morphologies and roll and the non-linear contact stiffness of support bearing were calculated. The dynamics equation of the vertical vibration for blade rolling mill roll system was solved by numerical integration method, and the influences of interface rough morphology on the dynamic response characteristics of rolling mill roll system were analyzed. The research results show that the vibration displacement amplitude of blade rolling mill roll system gradually decreases with the increasing of fractal dimension, the vibration frequency amplitude also decreases, and the system appears sub-harmonic vibration, showing the phenomenon of multi-frequency vibration. The research results provide a theoretical basis for realizing the vertical vibration control of rolling mill system.

基金项目:
河南省高等学校重点科研项目(22A460007);2022年河南省重点研发与推广专项(222102220020);2022年度安阳市科技特派员
作者简介:
作者简介:张瑜(1987-),男,博士,讲师,E-mail:z13464238735@sina.com
参考文献:

[1]张晓寒,Robert L. Jackson, 孟文俊.多尺度粗糙度对接触面真实接触面积的影响[J].润滑与密封, 2015, 40(6):76-80.


Zhang X H, Jackson R L, Meng W J. The influence of multiscale roughness on the real contact area between surfaces[J]. Lubrication Engineering, 2015, 40(6):76-80.

[2]Goerke D, Willner K. Normal contact of fractal surfaces-Experimental and numerical investigations [J]. Wear, 2008, 264(7-8): 589-598.

[3]侯东晓,郭大武,陈小辉.基于动态轧制力的四辊轧机垂直-扭转耦合非线性振动特性研究[J].振动与冲击,2020, 39(20): 106-112.

Hou D X, Guo D W, Chen X H. A study on vertical-torsional coupled nonlinear vibration characteristics of 4-h rolling mill based on dynamic rolling force[J].Journal of Vibration and Shock,2020,39 (20):106-112.

[4]黄金磊,臧勇,郜志英.工艺参数对热轧机振动固有特性影响分析[J].钢铁,2021,56(2):93-98,109.

Huang J L, Zang Y, Gao Z Y. Influence of process parameters on vibraiton natural charateristics of hot rolling mill[J].Iron and Steel,2021,56(2):93-98,109.[5]张阳,孙建亮,杜东源.板带轧机柔性多体系统耦合动力学建模研究[J].机械强度,2019,41(4):799-806.

Zhang Y, Sun J L, Du D Y. Strip rolling mill′s flexible multi-body system coupling dynamic modeling research[J].Journal of Mechanical Strength, 2019,41(4): 799-806.

[6]王运涛,王磊,田杰宇.基于动态摩擦和分段刚度的热轧机水平振动行为分析[J].锻压技术,2022,47(4):200-206,226.

Wang Y T, Wang L, Tian J Y. Analysis on horizontal vibration behavior of hot rolling mill based on dynamic fiction and piecewise stiffness[J]. Forging & Stamping Technology,2022,47(4):200-206,226.

[7]凌启辉,张维,赵前程,等.轧机垂直系统动力学参数辨识[J].钢铁,2019,54(11):123-129.

Ling Q H, Zhang W, Zhao Q C, et al. Dynamic parameter identification of rolling mill vertical system[J].Iron and Steel,2019,54(11):123-129.

[8]侯东晓,方成,陈善平,等.板带轧机液压压下-垂直振动特性研究[J].东北大学学报:自然科学版,2022,43(7): 972-980.

Hou D X, Fang C, Chen S P, et al. Research on hydraulic screw down-vertical vibration characteristics of strip rolling mill[J]. Journal of Northeastern University:Natural Science,2022,43(7): 972-980.

[9]孙韵韵,肖会芳,徐金梧.考虑轧制界面粗糙形貌的轧机辊系非线性振动特性研究[J].振动与冲击,2017, 36(8):113-120.

Sun Y Y, Xiao H F, Xu J W. Nonlinear vibration characteristics of a rolling mill system considering the roughness of rolling interface[J]. Journal of Vibraiton and Shock,2017, 36(8):113-120.

[10]李玲,裴喜永,史小辉,等.混合润滑状态下结合面的法向接触刚度研究[J].振动与冲击,2020,39(3): 16-23.

Li L, Pei X Y, Shi X H, et al.Normal contact stiffness of machine joint surfaces under mixed lubrication state[J]. Journal of Vibraiton and Shock,2020, 39(3): 16-23.

[11]原园,成雨,张静.基于分形的三维粗糙表面弹塑性接触力学模型与试验验证[J].工程力学,2018,35(6): 209-221.

Yuan Y, Cheng Y, Zhang J. Fractal based elastoplastic mechanics model for contact with rough surface and its experimental verification[J]. Engineering Mechanics,2018,35(6): 209-221.

[12]温晓宇,张学良,谭文兵,等.混合润滑结合面法向接触刚度三维分形模型研究[J].组合机床与自动化加工技术,2020,(11):49-53.

Wen X Y, Zhang X L, Tan W B,et al. Study on the normal contact stiffness of the 3D fractal rough surface in mixed lubrication[J]. Modular Machine Tool & Automatic Manufacturing Technique,2020,(11):49-53.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9