网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
轿车翼子板成形工艺分析与模具设计
英文标题:Forming process analysis and die design on automobile fender
作者:万志远 
单位:山东华宇工学院 机械工程学院 
关键词:翼子板 工艺补充面 落料连续模具 拉延模具 AutoForm 
分类号:TG386
出版年,卷(期):页码:2023,48(8):202-209
摘要:

 翼子板是轿车重要的外覆盖件之一,具有结构复杂、外形尺寸大、成形不易控制、表面质量要求高、材料厚度小、易产生回弹缺陷等特点。首先,分别选取翼子板零件工艺补充前后相同位置的15个典型截面进行结构分析,得到了零件典型位置的截面曲线变化情况,分析了与机舱总成、发动机盖总成、前门总成、侧围总成、前轮罩等重要位置搭接处的工艺补充面,为后续全工序设计奠定了基础。其次,根据结构分析,利用AutoForm等软件对轿车翼子板进行了工艺补充设计,确定了落料、拉延、修边-冲孔-侧修边、翻边-整形-侧翻边、侧翻边-侧冲孔-冲孔和侧翻边-侧成形6道全工序工艺过程。采用有限元模拟手段,对工艺补充后的零件进行了模拟计算,结果表明,翼子板零件的成形质量好,主体部位未出现开裂和起皱缺陷,材料的最大减薄率为24.3%,验证了工艺补充的合理性。最后根据工艺设计,重点设计了翼子板落料连续模具和拉延模具。

 Fender is one of the important outer covers for a car, and it has the characteristics of complex structure, large size, difficulty in forming control, high surface quality requirement and small material thickness, which is easy to produce springback defects. Therefore, firstly, fifteen typical cross-sections at the same position before and after process supplement of fender part were selected for structural analysis, the change of cross-section curve for the typical positions of part was obtained, and the process  supplementary surfaces at the important positions overlapping with engine room assembly, engine cover assembly, front door assembly, side panel assembly, front wheel cover etc. were analyzed, laying the foundation for the subsequent design of the whole process. Secondly, according to the structural analysis, the process supplement for automobile fender was designed by AutoForm and other softwares, and the whole process with six processes of blanking, drawing, trimming-punching-side trimming, flanging-shaping-side flanging, side flanging-side punching-punching and side flanging-side forming were determined. Furthermore, the finite element simulation method was used to simulate the parts after process supplement. The results show that the forming quality of fender part is good, there is no cracking or wrinkling defects in the main positions, and the maximum thinning rate of material is 24.3%, which verifies the rationality of the process supplement. Finally, according to the process design, the blanking continuous die and drawing die of fender are mainly designed. 

基金项目:
山东华宇工学院校级协同创新中心 “智能装备技术研发协同创新中心”资助项目
作者简介:
作者简介:万志远(1988-),男,硕士,副教授,工程师 ,E-mail:815223128@qq.com
参考文献:

[1]张昆明. 汽车前翼子板及其冲压模具分析研究[D]. 淮南:安徽理工大学,2019.


Zhang K M. Analysis and Research on Automobile Front Fender and Its Stamping Die [D]. Huainan:Anhui University of Science and Technology,2019.

[2]翁怀鹏. 基于DYNAFORM的车身翼子板冲压成形仿真模拟及工艺优化[D].芜湖:安徽工程大学,2016.

Weng H P. Based on DYNAFORM Car Fender Stamping Simulation and Process Optimization [D]. Wuhu:Anhui Polytechnic of Technology,2016.

[3]鲍月峰. 汽车前翼子板冲压成形的实验及数值仿真研究[D].长春:吉林大学,2017.

Bao Y F. Research on Experimental and Numerical Simulation of Stamping Forming for Automobile Front Fender [D].Changchun: Jilin University,2017.

[4]唐妍,蒋松.翼子板内板冲压工艺数值模拟及回弹补偿[J].锻压技术,2021,46(12):105-111.

Tang Y, Jiang S. Numerical simulation and springback compensation on stamping process for fender inner plate [J]. Forging & Stamping Technology,2021,46(12):105-111.

[5]蒋磊,马培兵,王龙,等.翼子板成形数值模拟与工艺优化[J].锻压技术,2021,46(11):113-123.

Jiang L, Ma P B, Wang L, et al. Numerical simulation and process optimization on fender forming [J]. Forging & Stamping Technology,2021,46(11):113-123.

[6]孙庆东,张翔,张军,等.基于Dynaform和正交试验的汽车后备箱拉延工艺优化[J].现代制造工程,2022,503(8):60-64.

Sun Q D, Zhang X, Zhang J,et al. Optimization of drawing process of automobile trunk based on Dynaform and orthogonal test [J]. Modern Manufacturing Engineering, 2022,503(8):60-64.

[7]林金海,孙层层.某汽车翼子板的拉延工艺分析[J].锻压技术,2021,46(7):96-99.

Lin J H, Sun C C. Analysis on drawing process for a certain automobile fender [J]. Forging & Stamping Technology,2021,46(7):96-99.

[8]陶威,刘钊,许灿,等.三维正交机织复合材料翼子板多尺度可靠性优化设计[J].上海交通大学报,2021,55(5):615-623.

Tao W, Liu Z, Xu C, et al. Multi-scale reliability-based design optimization of three-dimensional orthogonal woven composite fender [J]. Journal of Shanghai Jiaotong University,2021,55(5):615-623.

[9]蒋磊,李十全,王龙,等.基于CAD模面的翼子板全工序成形模拟与优化[J].制造技术与机床,2021,(4):115-121.

Jiang L, Li S Q, Wang L, et al. Simulation and optimization of complete stamping process for fender based on CAD die face [J]. Manufacturing Technology & Machine Tool,2021,(4):115-121.

[10]高鹏翔. 车身覆盖件冲压成形工艺参数设计专家系统[D].长沙:湖南大学,2021.

Gao P X. Expert System for Designing Process Parameters of Autobody Panels Stamping Forming[D]. Changsha:Hunan University,2021.

[11]王兴,吴明明,王江龙.基于有限元法和田口方法的翼子板成形工艺参数优化[J].河南工学院学报,2020,28(6):13-18. 

Wang X, Wu M M, Wang J L. Optimization of fender forming process parameters based on finite element method and Taguchi method [J]. Journal of Henan Institute of Technology,2020,28(6):13-18.

[12]赵锋,孟炬,杨月,等.轿车翼子板前保险杠搭接尺寸调整方法研究[J].汽车工业研究,2021,307(4):59-62.

Zhao F, Meng J, Yang Y, et al. Research on the lap size adjustment method of the front bumper of passenger car fender [J]. Automotive Industry Research,2021,307(4):59-62.

[13]唐士东,王昌,戴长征.基于翼子板常见缺陷的调试与分析研究[J].锻造与冲压,2022, 537(16):49-51.

Tang S D, Wang C, Dai C Z. Debugging and analysis upon the common defects of fenders [J]. Forging & Metalforming,2022, 537(16):49-51.

[14]刘香川. A公司整车外观匹配质量的提升研究[D].济南:山东大学,2022.

Liu X C. Research on the Improvement of Vehicle Appearance Matching Quality of a Company [D]. Jinan:Shandong University,2022.

[15]闫巍,张健,王刚,等.翼子板冲压回弹优化方法及应用[J].模具工业,2021,47(1):33-39.

Yan W, Zhang J, Wang G, et al. Optimization method and application of stamping springback or automobile fender [J]. Die & Mould Industry,2021,47(1):33-39.

(上接第82页)

[12]Du Z H,Wang C X, Liu Q, et al. The superplastic forming/diffusion bonding of TA7 titanium alloy for manufacturing hollow structure with stiffeners [J] Journal of Manufacturing Processes, 2022, 73(1): 385-394.

[13]李晓华, 韩秀全, 王飞,等. 钛合金两层整体构件超塑成形/焊接组合工艺与质量控制 [J]. 航空制造技术, 2013, (16): 28-31.

Li X H,Han X Q,Wang F, et al. Superplastic forming/welding combination technology and quality control of titanium alloy two-layer integrated component [J]. Aeronautical Manufacturing Technology, 2013, (16): 28-31.

[14]王会东, 付和国, 韩颖杰, 等. 大型双曲率非等厚TC4钛合金壁板整体SPF/DB成形工艺及优化 [J]. 锻压技术, 2022, 47(1): 75-80.

Wang H D,Fu H G,Han Y J, et al. Integral SPF /DB forming process and its optimization for TC4 titanium alloy panel with large size, dual curvature and non-uniform thickness[J]. Forging & Stamping Technology, 2022, 47(1): 75-80.

[15]Hefti L D. Fine-grain Ti-6AI-4V for superplastic forming and diffusion bonding of aerospace products [J]. JOM, 2010, 62(5): 42-45.

[16]张凌云, 祁桂根. 铝锂合金在航空业的应用及SPF/DB工艺进展 [J]. 金属成形工艺, 2001, 19(3): 1-3.

Zhang L Y,Qi G G. Application of Al-Li alloys in aeronautical industry and advances on SPF/DB [J].Metal Forming Technology, 2001, 19(3): 1-3.

[17]陈国庆, 尹乾兴, 司晓庆, 等. 铝锂合金焊接技术的研究现状分析 [J]. 焊接学报, 2019, 40(8): 155-160,168.

Chen G Q,Yin Q X,Si X Q, et al. Research status analysis of aluminum-lithium alloy welding [J]. Transactions of The China Welding Institution, 2019, 40(8): 155-160,168.

[18]高云鹏, 王颖, 王东坡, 等. TC11钛合金扩散连接接头组织及力学性能研究 [J]. 稀有金属材料与工程, 2023, 52(2): 770-776.

Gao Y P,Wang Y,Wang D P, et al. Microstructure and mechanical properties of diffusion bonded TC11 alloy joint [J]. Rare Metal Materials and Engineering, 2023, 52(2): 770-776.

[19]杜立华, 张兴振, 韩晓宁, 等.几何参数对SPF/DB三层结构表面质量的影响研究[J].航空制造技术,2018,61(10):100-103. 

Du L H,Zhang X Z,Han X N,et al. Influence of geometric parameters on surface quality of SPF/DB hollow structure[J]. Aeronautical Manufacturing Technology,2018,61(10):100-103.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9