[1]赵明杰, 邓磊, 孙朝远, 等. 300M高强钢大型构件全流程锻造变形机理及工艺研究进展 [J]. 科学通报, 2022, 67 (11): 1036-1053.
Zhao M J, Deng L, Sun C Y, et al. Advances on the deformation mechanism and forging technology of 300M high-strength steel heavy components in the whole forging process [J]. Chinese Science Bulletin, 2022, 67 (11): 1036-1053.
[2]赵明杰, 黄亮, 李昌民, 等. 300M钢的热变形行为及热锻成形工艺研究现状 [J]. 精密成形工程, 2020, 12 (6): 16-27.
Zhao M J, Huang L, Li C M, et al. Research status of the hot deformation behaviors and hot forging process of 300M steel [J]. Journal of Netshape Forming Engineering, 2020, 12 (6): 16-27.
[3]赵明杰, 黄亮, 李建军, 等. 300M钢热扭转变形条件下的变形行为研究 [J]. 塑性工程学报, 2020, 27 (11): 159-166.
Zhao M J, Huang L, Li J J, et al. Deformation behaviors of 300M steel under hot torsion [J]. Journal of Plasticity Engineering, 2020, 27 (11): 159-166.
[4]Chamanfar A, Chentouf S M, Jahazi M, et al. Austenite grain growth and hot deformation behavior in a medium carbon low alloy steel [J]. Journal of Materials Research and Technology, 2020, 9 (6): 12102-12114.
[5]Zhao M J, Huang L, Li C M, et al. Investigation and modeling of austenite grain evolution for a typical high-strength low-alloy steel during soaking and deformation process [J]. Acta Metallurgica Sinica:English Letters, 2022, 35 (6): 996-1010.
[6]Zhao F, Hu H, Liu X H, et al. Effect of billet microstructure and deformation on austenite grain growth in forging heating of a medium-carbon microalloyed steel [J]. Journal of Alloys and Compounds, 2021, 869: 159326.
[7]Chen R C, Zheng Z Z, Li J J, et al. In situ investigation of grain evolution of 300M steel in isothermal holding process [J]. Materials, 2018, 11 (10): 1862.
[8]Zhang Y, Li X H, Liu Y C, et al. Study of the kinetics of austenite grain growth by dynamic Ti-rich and Nb-rich carbonitride dissolution in HSLA steel: In-situ observation and modeling [J]. Materials Characterization, 2020, 169: 110612.
[9]Su F Y, Liu W L, Wen Z. Three-dimensional cellular automaton simulation of austenite grain growth of Fe-1C-1.5Cr alloy steel [J]. Journal of Materials Research and Technology, 2020, 9 (1): 180-187.
[10]Quan G Z, Zhang P, Ma Y Y, et al. Characterization of grain growth behaviors by BP-ANN and Sellars models for nickle-base superalloy and their comparisons [J]. Transactions of Nonferrous Metals Society of China, 2020, 30 (9): 2435-2448.
[11]张一帆, 朱晓飞, 周舸, 等. A100钢的热变形行为及加工图 [J]. 精密成形工程, 2022, 14 (2): 88-94.
Zhang Y F, Zhu X F, Zhou K, et al. Hot deformation behavior and processing map of A100 steel [J]. Journal of Netshape Forming Engineering, 2022, 14 (2): 88-94.
[12]钱芳, 王忠堂. AerMet100超高强度钢的热变形行为及本构模型研究 [J]. 热加工工艺, 2018, 47 (14): 88-90, 96.
Qian F, Wang Z T. Study on thermal deformation behavior and constitutive model of AerMet100 ultra high strength steel [J]. Hot Working Technology, 2018, 47 (14): 88-90, 96.
[13]孙朝远, 谢静, 苗小浦, 等. Aermet100超高强度钢热变形中的动态再结晶行为研究 [J]. 热加工工艺, 2017, 46 (20): 112-115.
Sun C Y, Xie J, Miao X P, et al. Research on dynamic recrystallization behavior of Aermet100 ultra-high strength steel during hot deformation [J]. Hot Working Technology, 2017, 46 (20): 112-115.
[14]Zhao Z L, Min X N, Xu W X, et al. Dynamic recrystallization models of AerMet100 ultrahigh strength steel during thermo-mechanical processing [J]. Rare Metal Materials and Engineering, 2020, 49 (10): 3285-3293.
[15]乔慧娟, 李付国, 冀国良, 等. Aermet100钢高温变形行为及热加工图研究 [J]. 稀有金属材料与工程, 2014, 43 (4): 926-931.
Qiao H J, Li F G, Ji G L, et al. Deformation behavior at elevated temperature and processing map of Aermet100 steel [J]. Rear Metal Materials and Engineering, 2014, 43 (4): 926-931.
[16]王鑫, 董洪波, 邹忠波, 等. AerMet100钢的热变形显微组织演变及动态再结晶行为 [J]. 特种铸造及有色合金, 2016, 36 (2): 121-125.
Wang X, Dong H B, Zou Z B, et al. Microstructure evolution and dynamic recrystallization behavior of hot deformed Aermet100 steel [J]. Special Casting & Nonferrous Alloys, 2016, 36 (2): 121-125.
[17]Zhao M J, Huang L, Zeng R, et al. In-situ observations and modeling of metadynamic recrystallization in 300M steel [J]. Materials Characterization, 2020, 159: 109997.
[18]Zhao M J, Huang L, Zeng R, et al. In-situ observations and modeling of static recrystallization in 300M steel [J]. Materials Science and Engineering: A, 2019, 765: 138300.
[19]Liu F, Xu G, Zhang Y L, et al. In situ observations of austenite grain growth in Fe-C-Mn-Si super bainitic steel [J]. International Journal of Minerals, Metallurgy and Materials, 2013, 20 (11): 1060-1066.
[20]Li M Y, Yao D, Yang L, et al. Kinetic analysis of austenite transformation for B1500HS high-strength steel during continuous heating [J]. International Journal of Minerals, Metallurgy and Materials, 2020, 27 (11): 1508-1516.
[21]Banerjee K, Militzer M, Perez M, et al. Nonisothermal austenite grain growth kinetics in a microalloyed X80 linepipe steel [J]. Metallurgical and Materials Transactions A, 2010, 41 (12): 3161-3172.
[22]Rudnizki J, Zeislmair B, Prahl U, et al. Prediction of abnormal grain growth during high temperature treatment [J]. Computational Materials Science, 2010, 49 (2): 209-216.
[23]Zhang S S, Li M Q, Liu Y G, et al. The growth behavior of austenite grain in the heating process of 300M steel [J]. Materials Science and Engineering: A, 2011, 528 (15): 4967-4972.
[24]Lee S J, Lee Y K. Prediction of austenite grain growth during austenitization of low alloy steels [J]. Materials & Design, 2008, 29 (9): 1840-1844.
[25]Ruan J J, Ueshima N, Oikawa K. Phase transformations and grain growth behaviors in superalloy 718 [J]. Journal of Alloys and Compounds, 2018, 737: 83-91.
[26]Xu Y W, Tang D, Song Y, et al. Prediction model for the austenite grain growth in a hot rolled dual phase steel [J]. Materials & Design, 2012, 36: 275-278.
|