网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
汽车高强钢锻件淬火开裂分析与有限元模拟
英文标题:Analysis and finite element simulation on quenching cracking for automotive high-strength steel forgings
作者:陈荣创1 吕镓均1 邓庆文2 陶鹏3 张运军2 
单位:1.湖北汽车工业学院 2.湖北三环锻造有限公司 3.东风汽车股份有限公司 
关键词:高强钢 淬火 开裂 金属流线 滑移 剪切 
分类号:TG142.1
出版年,卷(期):页码:2023,48(9):7-14
摘要:

 某汽车高强钢锻件在生产中面临淬火开裂问题,急需从生产工艺上回溯开裂原因。对淬火后的某汽车高强钢锻件进行解剖,观察了裂纹形貌、金属流线、微观组织和元素分布,发现断裂处材料流动极不均匀,锻造变形时剧烈的滑移和剪切是导致开裂的主要原因。模拟了某SAE5137H汽车高强钢锻件在浓度为9%的PAG淬火液(聚烷撑乙二醇质量分数为9%的水性淬火介质)中淬火的过程,发现淬火开裂位置的最大等效应力远低于材料的抗拉强度,淬火应力较小。综合裂纹分析的试验结果和有限元分析结果可知,该锻件锻造过程中材料流动不均匀,局部产生剧烈滑移,使材料塑性下降,虽然在锻造后未直接开裂,但在淬火热应力的作用下因塑性不足而导致开裂。根据开裂原因,将位置A开裂处预锻模膛局部凹模圆角半径减小至R8 mm,并对锻件位置B处局部加热,锻件淬火开裂比例显著下降,解决了开裂问题。

 High-strength steel forgings for an automobile face the problem of quenching cracking in production, and it is urgent to trace the cause of cracking from the production process. Therefore, the high-strength steel forgings after quenching for an automobile were dissected, and the crack morphology, metal streamlines, microstructure and element distribution were observed. Then, it was found that the material flow at the fracture was extremely uneven, and the severe slip and shear during the forging deformation were the main causes of cracking. Furthermore, the quenching process of an automotive SAE5137H high-strength steel forgings for an automobile in PAG quenching liquid with the mass fraction of 9% (water-based quenching medium containing 9% polyalkylene glycol) was simulated, and it was found that the maximum equivalent stress at the location of quenching cracking was much lower than the tensile strength of material, the quenching stress is low. Comprehensive crack analysis test result and finite element analysis result show that the material flow is not uniform during the forging process of forgings, and severe slip occurs locally, which reduces the plasticity of material. Although there is no direct cracking after forging, the lack of plasticity under the action of quenching thermal stress leads to cracking. According to the reason of cracking, by reducing the local die fillet of pre-forging mold cavity at cracking position A  to R8 mm, and local heating at position B of the forgings, the quenching cracking ratio of the forgings is significantly reduced, and the cracking problem is solved.

基金项目:
湖北省自然科学基金资助项目(2020CFB374)
作者简介:
作者简介:陈荣创(1987-),男,博士,副教授 E-mail:crc@huat.edu.cn
参考文献:

 [1]谢允钏,何西样,孔孟泽,等.轴类工件热处理裂纹原因分析及预防[J].金属加工:热加工, 2022, 854(11): 82-84.


Xie Y C, He X Y, Kong M Z, et al. Analysis of the causes and prevention of heat treatment cracks in shaft workpiece[J]. MW Metal Forming, 2022, 854(11): 82-84.

[2]Liu Z W, Wang A Q, Zhang Q F, et al. Microstructure evolution and process optimization of molybdenum rods during loose tooling forging[J]. International Journal of Refractory Metals and Hard Materials, 2022, 108: 105926.

[3]Takefumi A, Daisuke Y, Hideki K. Influence of anvil shape of surface crack generation in large hot forging process[J]. Procedia Engineering, 2014, 81: 480-485.

[4]张全新,江海军,王春奕.4Cr5MoSiV1钢模块锻造开裂原因[J].理化检验:物理分册,2020,56(7):66-68,72.

Zhang Q X, Jiang H J, Wang C Y. Forging cracking cause of 4Cr5MoSiV1 steel module[J]. Physical Testing and Chemical Analysis: Part A:Physical Testing,2020,56(7):66-68, 72.

[5]Kuznetsov A A, Rudnev V I. Causes of cracking in quenching of the parts made of steels and cast iron and recommendations for their removal: A review[J]. Russian Metallurgy (Metally), 2017, 13: 1125-1130.[6]Sanja , Bojan P, Vojteh L. The occurrence of quenching cracks in highcarbon tool steel depending on the austenitizing temperature[J]. Engineering Failure Analysis, 2018, 92: 140-148.

[7]Eun H H, Jin S P, Si O, et al. Study on the controlling factors for the quenching crack sensitivity of ultrastrong automotive steel[J]. Journal of Materials Science,2020,55(8):3605-3617.

[8]王高远,王凯,张枝梅.2Cr13钢异形模锻件淬火裂纹分析及热处理工艺优化[J].金属热处理,2022,47(11):45-53.

Wang G Y, Wang K, Zhang Z M. Quenching crack analysis and heat treatment process optimization of 2Cr13 steel specialshaped die forging parts[J]. Heat Treatment of Metals, 2022,47(11):45-53.

[9]Nikolai K. Cooling process optimization during hardening steel in water polyalkylene glycol solutions[J]. Technology Audit and Production Reserves, 2021, 6(1): 27-35.

[10]Vasundhara S, Rashul K, Bharath B, et al. Effect of nonmetallic inclusions (NMI) on crack formation in forged steel[J]. Materials Today: Proceedings,2020, 41(5):1096-1102.

[11]张坤,骆文锋,郭小童,等.淬火温度对45钢淬火开裂的影响[J].机械工程材料,2022,46(3):63-67. 

Zhang K, Luo W F, Guo X T, et al. Effect of quenching temperature on quenching cracking of 45 steel[J]. Materials for Mechanical Engineering, 2022,46(3):63-67.

[12]Prakash K, Valmik B, Sandeep T, et al. Experimental characterization of electron beam welded SAE 5137H thick steel plate[J]. IOP Conf. Ser.: Mater. Sci. Eng., 2017, 229:012028.

[13]宋玉冰,陈明,郭彪,等.12Cr2Mo1大型钢锭锻造裂纹分析与控制[J].锻压技术,2021,46(10):49-55. 

Song Y B, Chen M, Guo B, et al. Analysis and control of forging cracks for 12Cr2Mo1 large ingots [J]. Forging & Stamping Technology, 2021,46(10): 49-55.

[14]李东鹏,王卫泽,黄继波,等.W,Re过渡层对碳基体表面Al2O3涂层高温热匹配性和层间扩散的影响[J].稀有金属,2022,46(9):1181-1189.

Li D P, Wang W Z, Huang J B, et al. Alleviating high temperature thermal mismatch and element diffusion of Al2O3 coating on carbon substrate by introducing W/Re interlayer[J]. Chinese Journal of Rare Metals, 2022, 46(9):1181-1189.

[15]许海丽,雷声,贾卫星,等.6016T4铝合金预警器支架翻边开裂的数值模拟及优化[J].锻压技术,2021,46(8):62-69.

Xu H L, Lei S, Jia W X. Numerical simulation and optimization on flange cracking of early warning device bracket for 6016T4 aluminum alloy[J]. Forging & Stamping Technology, 2021,46(8):62-69.

[16]李林鑫,赵平,冯铃,等.发动机托架后安装板翻边成形拐角区域的开裂研究[J].锻压技术,2021,46(8):84-89.

Li L X, Zhao P, Feng L, et al. Study on cracking in corner area of flanging for rear mounting plate of engine bracket[J]. Forging & Stamping Technology,2021,46(8):84-89.

[17]隋佳丽,李新生,肖桂勇,等.淬火介质表面换热系数的计算方法与应用[J].热加工工艺, 2023, 14:137-141. 

Sui J L, Li X S, Xiao G Y, et al. Calculation method and application of surface heat transfer coefficient of quenching medium [J]. Hot Working Technology, 2023, 14:137-141.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9