网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
A286高温合金薄壁管件镦制工艺优化
英文标题:Optimization on upsetting process for superalloy A286 thin-walled tube
作者:雷小叶1 江玉莲2 冯治国2 陶亮2 
单位:1. 贵州工业职业技术学院 2. 贵州大学 
关键词:A286高温合金 薄壁管件 冷镦成形 正挤压 反挤压 
分类号:TG132.2
出版年,卷(期):页码:2023,48(9):71-80
摘要:

 针对某型A286高温合金薄壁管件的薄壁特征镦制成形过程中,容易出现折叠、填充不完全、飞边等问题进行了研究。提出了正挤压和反挤压两种材料流动方式,并利用Deforn3D有限元软件进行数值模拟。对比分析了两种镦制工艺成形过程中的成形效果、等效应力、等效应变、金属流线和材料流动规律,数值模拟结果表明:与反挤压相比,正挤压成形制件的应力集中明显,金属流线紊乱,且有明显缺陷,采用反挤压镦制工艺更加合理。镦制实验结果表明,采用反挤压镦制成形的制件具有良好的几何特性,无填充不完全、折叠、飞边等缺陷,实验结果与数值模拟结果一致。

 A study was conducted to investigate the occurrence of folding, incomplete filling and flashing during the thin-walled characteristic upsetting process of superalloy A286 thin-walled tube, and two material flow modes, namely forward extrusion and reverse extrusion, were proposed. Then, the forming processes were numerical simulated by finite element software Deforn-3D, respectively, and a comparative analysis was performed to assess the forming effects, equivalent stress, equivalent strain, streamline and material flow law during the forming process of the two upsetting processes. The numerical simulation results indicate that compared with the reverse extrusion, the stress concentration of the forward extruded parts is obvious, the streamline is disorderly, and it is accompanied by obvious defects, so it is more reasonable to adopt the reverse extrusion upsetting process. The upsetting experimental results show that the parts formed by the reverse extrusion upsetting process have good geometric characteristics, and there are no defects such as incomplete filling, folding and flashing. The experimental results are consistent with the numerical simulation results.

基金项目:
国家自然科学基金资助项目(52165042);贵州省科学技术基金重点项目(黔科合基础[2020]1Z049);贵州省优秀青年人才项目(黔科合平台人才[2021]5617号);贵阳市科技人才培养项目(筑科合同[2021]43-1号)
作者简介:
作者简介:雷小叶(1978-),女,硕士,副教授 E-mail:453708475@qq.com 通信作者:江玉莲(1997-),女,博士研究生 E-mail:17433923972@qq.com
参考文献:

 [1]Mccormack C, Monaghan J. A finite element analysis of coldforging dies using two and threedimensional models [J]. Journal of Materials Processing Technology, 2001, 118(1-3): 286-292.


[2]Cao T S, Vachey C, Montmitonnet P, et al. Comparison of reduction ability between multistage cold drawing and rolling of stainless steel wire experimental and numerical investigations of damage [J]. Journal of Materials Processing Technology, 2015, 217: 30-47.

[3]Monaghan J M. Stress analysis of a cold forging process applied to a countersunk headed fastener [J]. Journal of Materials Processing Technology, 1993, 39(1-2): 191-211.

[4]赵震,陈军,吴公明,等.冷温热挤压技术[M].北京:电子工业出版社,2008.

Zhao Z, Chen J, Wu G M, et al. Cold Warm Extrusion Technology [M]. Beijing:Publishing House of Electronics Industry,2008.

[5]Liu Z F, Zhou J, Feng W J, et al. Modeling, analysis, and multiobjective optimization of cold extrusion process of clutch outer gear hub using response surface method and metaheuristic approaches[J]. The International Journal of Advanced Manufacturing Technology, 2021, 116(1):229-239.

[6]Ku T W. A combined cold extrusion for a drive shaft: Experimental assessment on dimensional compatibility [J]. Journal of Mechanical Science and Technology, 2020, 34: 5213-5222.

[7]Liu Z F, Zhou J, Fan Y B, et al. Numerical simulation and experimental study on cold extrusion process for clutch outer gear hub with inner tooth shapes [J]. The International Journal of Advanced Manufacturing Technology, 2021, 112(5/6): 1437-1448.

[8]ZawadaMichaowska M, Kuczmaszewski J, Pies'ko P. Influence of premachining on postmachining deformation of thinwalled elements made of aluminium alloy EN AW2024[J]. IOP Conference Series: Materials Science and Engineering, 2018, 393(1): 012100. 

[9]Zhang X, Ma J W, Jia Z Y, et al. Machining parameter optimisation for aviation aluminiumalloy thinwalled parts in highspeed milling[J]. Int. J. of Machining and Machinability of Materials, 2018, 20(2): 180-192.

[10]张博林,姜忠平,李毅,等.高强度合金钢深孔薄壁件加工工艺方法[J].工具技术,2022,56(5):90-93. 

Zhang B L, Jiang Z P, Li Y, et al. Machining process of high strength alloy steel deep hole thinwall parts [J]. Tool Technology, 2022, 56(5): 90-93.

[11]杨万博,霍元明,何涛,等.TC16钛合金航空紧固件冷镦成形实验研究[J].塑性工程学报,2020,27(10): 7-12. 

Yang W B, Huo Y M, He T, et al. Experimental study on cold heading forming of aerospace fasteners of TC16 titanium alloy [J]. Journal of Plasticity Engineering, 2020, 27(10): 7-12.

[12]Esfandiari M, Dong H. Improving the surface properties of A286 precipitationhardening stainless steel by lowtemperature plasma nitriding [J]. Surface and Coatings Technology, 2007, 201(14): 6189-6196.

[13]高圣勇,王一雯,苏孺,等.GH4169高温合金低周疲劳变形行为研究[J].稀有金属,2022,46(3):289-296.

Gao S Y, Wang Y W, Su R, et al. Lowcycle fatigue behavior of GH4169 superalloy[J]. Chinese Journal of Rare Metals,2022, 46(3):289-296.

[14]辛选荣,梁坤,谢田,等.高温合金A286室温动态力学性能研究[J].锻压技术,2013,38(4):144-147.

Xin X R, Liang K, Xie T, et al. Study on dynamic mechanical properties of A286 high temperature alloy at room temperature[J]. Forging & Stamping Technology,2013,38(4):144-147.

[15]潘鹏. 高速列车大规格高强度高耐疲劳紧固件精密成型研究[D].贵阳:贵州大学, 2020.

Pan P. Research on Precision Forming of Fasteners with Large Specifications, High Strength and High Fatigue Resistance for Highspeed Trains [D]. Guiyang: Guizhou University, 2020.

[16]骆静,张婧,桓思颖,等.内花键双联齿轮的精密塑性成形[J].锻压技术,2022,47(12):103-108.

Luo J, Zhang J, Huan S Y, et al. Precision plastic forming of internal spline double helical gears [J]. Forging & Stamping Technology, 2022, 47(12): 103-108.

[17]Jiang X S, Jiang J X, Liu W X, et al. Effect of equivalent stress amplitude on multiaxial fretting fatigue behavior of AlZnMg alloy[J]. Strength of Materials, 2020, 52(3): 458-469.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9