网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
多筋构件等温局部加载材料跨变形区转移的快速预测
英文标题:Rapid prediction on material transfer across deformation zones for multirib component under isothermal
作者:唐海兵  魏科  杨超  丁潼  何国云 
单位:南昌航空大学 航空制造工程学院 
关键词:等温局部加载 材料转移体积 分流面 折叠 力平衡 
分类号:TG156
出版年,卷(期):页码:2023,48(10):8-15
摘要:

 针对多筋构件在等温局部加载过程中固有的材料跨区转移以及可能产生的折叠问题,提出了一种能快速预测材料转移体积的方法。首先,提取局部加载过渡区的几何特征结构,并设计形状简易的等厚坯料以详细地反映材料跨区转移特征;其次,采用有限元模拟与物理模拟实验,分析多筋构件局部加载成形过程,根据过渡区材料流动特征及应力状态,将加载区材料分为3个区域;随后,根据大小相等且方向相反的力平衡条件,对这3个区域的基元体进行受力分析,通过联立力的平衡方程与屈服方程,利用边界条件对方程进行求解,得到分流面位置及材料转移体积的预测模型;最后,将有限元分析结果与预测模型结果进行对比,证实了预测结果的合理性和可靠性。

 Aiming at the inherent cross-area material transfer and the possible folding problem of multi-rib components in the isothermal local loading process, a method for quickly predicting the material transfer volume was proposed. Firstly, the geometric feature structure of transition zone under the local loading was extracted, and the equal thickness blank with a simple shape was designed to reflect the cross-area material transfer characteristics in detail. Secondly, the local loading forming process of multi-rib components was analyzed by finite element simulation and physical simulation experiments. Then, according to the material flow characteristics and stress state of material in the transition zone, the material in the loading zone was divided into three regions, and according to the force balance condition of equal size and opposite direction, the force analysis on the elementary bodies in these three zones was performed. Furthermore, the prediction model of neutral layer position and material transfer volume was obtained by the force equilibrium equation, yield equation and boundary conditions to solve the equation. Finally, the finite element analysis results were compared with the results of the prediction model to verify the rationality and reliability of the prediction results.

基金项目:
国家自然科学基金资助项目(52005241);国家留学基金委项目(202208360107);江西省研究生创新专项资金项目(YC2021-S673)
作者简介:
唐海兵(1996-),男,硕士研究生 E-mail:tanghaibingcmh@163.com
参考文献:

 
[1]高鹏飞, 于超, 雷珍妮, 等. 钛合金复杂构件等温锻宏微观成形规律与调控研究进展
[J]. 塑性工程学报, 2020, 27(7):21-32.


Gao P F, Yu C, Lei Z N, et al. Research progress on macro and micro forming law and regulation of isothermal forging of titanium alloy complex components
[J]. Journal of Plasticity Engineering, 2020, 27 (7):21-32.


[2]Yuan S J, Fan X B. Developments and perspectives on the precision forming processes for ultralarge size integrated components
[J]. International Journal of Extreme Manufacturing, 2019, 1(2):34-51.


[3]魏科, 马庆, 徐勇, 等. 大型/复杂模锻件省力成形工艺研究进展
[J]. 塑性工程学报, 2021, 28(5):166-182.

Wei K, Ma Q, Xu Y, et al. Research progress on laborsaving forming process of large/complex die forgings
[J]. Journal of Plasticity Engineering, 2021, 28 (5):166-182.


[4]王仲仁, 张琦. 模锻省力的原理与途径
[J]. 机械工程学报, 2013, 49(18):92-98.

Wang Z R, Zhang Q. Principle and approach of labor saving in die forging
[J]. Journal of Mechanical Engineering, 2013, 49 (18):92-98.


[5]Zhang D W, Fan X G. Review on intermittent local loading forming of largesize complicated component: Deformation characteristics
[J]. International Journal of Advanced Manufacturing Technology, 2018, 99:1427-1448.


[6]Wei K, Ma Q, Wang G C, et al. Exploration of the material transfer effect in local loading forming of ultralargesize integrated component with multirib
[J]. International Journal of Advanced Manufacturing Technology, 2020, 108(2):1-15.


[7]唐海兵, 魏科, 钟锐, 等. 航空框梁构件等温局部锻造成形的材料跨变形区转移规律研究
[J].锻压技术,2021,46(12):6-12.

Tang H B, Wei K, Zhong R, et al. Grain size evolution of large titanium alloy components during isothermal local loading
[J] Forging & Stamping Technology,46(12):6-12.


[8]Gao P F, Fei M, Yan X G, et al. Prediction of the folding defect in die forging: A versatile approach for three typical types of folding defects
[J]. Journal of Manufacturing Processes, 2019, 39:181-191.


[9]Sun Z C, Yang H. Characteristic of largescale and complex ribweb components isothermal local loading forming
[A]. Advanced Technology of Plasticity 2008, 9th International Conference on Technology of Plasticity
[C]. Gyeonggi,2008.


[10]孙念光, 杨合, 孙志超. 大型钛合金隔框等温闭式模锻成形工艺优化
[J]. 稀有金属材料与工程, 2009, 38(7):1296-1300.

Sun N G, Yang H, Sun Z C. Optimization of isothermal closed die forging process for large titanium alloy spacer frame
[J]. Rare Metal Materials and Engineering, 2009, 38 (7):1296-1300.


[11]孙志超, 杨合, 孙念光. 钛合金整体隔框等温成形局部加载分区研究
[J]. 塑性工程学报, 2009, 16(1):138-143.

Sun Z C, Yang H, Sun N G. Study on local loading zoning of isothermal forming of titanium alloy integral spacer frame
[J]. Journal of Plasticity Engineering, 2009, 16 (1):138-143.


[12]Li X T, Qian L Y, Sun C Y, et al. The effect of loading mode on isothermal local loading forming of magnesium alloy ribweb component
[J]. The International Journal of Advanced Manufacturing Technology, 2021, 114(7):2485-2497.


[13]Gao P F, Yang H, Fan X G, et al. Quick prediction of the folding defect in transitional region during isothermal local loading forming of titanium alloy largescale ribweb component based on folding index
[J]. Journal of Materials Processing Technology, 2015, 219:101-111.


[14]Zhang D W, Yang H, Sun Z C. Analysis of local loading forming for titaniumalloy Tshaped components using slab method
[J]. Journal of Materials Processing Technology, 2010, 210(2):258-266.


[15]Wei K, Fan X G, Zhan M, et al. Uncertainty analysis and multiobjective billet robust optimization for transitional region of multirib component under isothermal local loading forming
[J]. The International Journal of Advanced Manufacturing Technology, 2018, 97(1-4):1165-1179.


[16]徐宁宁, 孙朝阳, 钱凌云, 等. 镁合金板形件扭挤成形载荷的主应力法求解模型
[J]. 机械工程学报, 2021, 57(4):73-82.

Xu N N, Sun C Y, Qian L Y, et al. Principal stress method solution model of torsional extrusion load of magnesium alloy sheet metal
[J]. Journal of Mechanical Engineering, 2021, 57 (4):73-82.


[17]姜雪鹏, 潘晴, 李毅波, 等. T型三通多向模锻过程变形力预测方法
[J]. 塑性工程学报, 2021, 28(5):113-125.

Jiang X P, Pan Q, Li Y B, et al. Prediction method of deformation force in multidirectional die forging process
[J]. Journal of Plasticity Engineering, 2021, 28 (5):113-125.


[18]吕文兵, 陆新江, 黄明辉, 等. 集成机理与数据的复杂模锻过程在线建模方法
[J]. 中国机械工程, 2015, 26(9):1227-1232.

Lyu W B, Lu X J, Huang M H, et al. Online modeling method of complex die forging process integrating mechanism and data
[J]. China Mechanical Engineering, 2015, 26 (9):1227-1232.


[19]Xiao H, Fan X G, Zhan M, et al. Flow stress correction for hot compression of titanium alloys considering temperature gradient induced heterogeneous deformation
[J]. Journal of Materials Processing Technology, 2021, 288:116868.


[20]Zhang D W, Yang H. Numerical study of the friction effects on the metal flow under local loading way
[J]. The International Journal of Advanced Manufacturing Technology,2013, 68(5-8):1339-1350.


[21]Robinson T, Ou H A, Armstrong C G. Study on ring compression test using physical modeling and FE simulation
[J]. Journal of Materials Processing Technology, 2004, 153-154:54-59.


[22]Gao P F, Yang H, Fan X G. Quantitative analysis of the material flow in transitional region during isothermal local loading forming of Tiacmponent
[J]. The International Journal of Advanced Manufacturing Technology, 2014, 75(9):1339-1347.


[23]汪大年.金属塑性成形原理
[M].北京:机械工业出版社,1982.

Wang D N.Principles of Metal Plastic Forming
[M]. Beijing:China Machine Press, 1982.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9