网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
圆盘件镦粗成形过程中摩擦模型对接触区分布的影响
英文标题:Influence of friction model on contact zone distribution during upsetting process for disc parts
作者:陈慧1 冯玮1 2 3 庄武豪3 
单位:1.武汉理工大学 材料科学与工程学2.湖北省材料绿色精密成形工程技术研究中心院 3. 现代汽车零部件技术湖北省重点实验室 
关键词:镦粗成形 接触区 圆盘件 变形程度 摩擦模型 
分类号:TG306
出版年,卷(期):页码:2023,48(10):215-221
摘要:

 针对圆盘件镦粗成形过程中,接触区不同区域在不同变形程度下的摩擦剪切应力变化复杂的情况,研究了适合于圆盘件锻粗成形的摩擦模型,建立了初始径厚比为5的圆盘件镦粗成形有限元模型,分析了不同摩擦模型在不同变形程度下接触区的分布特点以及制动区半径的变化特点,并与计算结果进行了比较,开展了相关工艺实验验证。结果表明:在圆盘件镦粗成形中,随着变形程度的增加,接触区分布随径厚比的变化而变化,采用修正混合摩擦模型预测的制动区半径变化特点与理论值更接近,其预测精度较高。研究结果为圆盘件塑性成形有限元模拟中摩擦边界条件的设置提供了指导。

 During the upsetting process of disc parts, for the complex friction shear stress changes at different areas of contact area under different deformation degrees, the friction model switable for the disc upsetting was studied,  the finite element model of upsetting for the disc parts with an initial diameter-thickness ratio of 5 was established, and the distribution characteristics of contact area and the change characteristics of radius in braking area under different deformation degrees for different friction models were analyzed and compared with the calculated results. Then, the relevant process experiments were carried out to verify. The results show that in the upsetting process of disc parts, the distribution of contact area varies with the diameter-thickness ratio as the deformation degree increases, and the change characteristics of radius in braking area predicted by the modified hybrid friction model are closer to the theoretical value, and the prediction accuracy is higher. The results provide guidance for the setting of friction boundary conditions in finite element simulation of plastic forming for disc parts.

基金项目:
国家自然科学基金资助项目(52275369,52005375);教育部创新团队发展计划项目(IRT_17R83)
作者简介:
陈慧(1997-),女,硕士研究生 E-mail:whut_chenhui@163.com
参考文献:

 
[1]张大伟, 李智军, 杨光灿, 等. 金属体积成形中摩擦描述与评估研究进展
[J]. 锻压技术, 2021, 46(10):1-10.


Zhang D W, Li Z J, Yang G C, et al. Research progresses of description and evaluation for friction during bulk metal forming
[J]. Forging & Stamping Technology, 2021, 46(10):1-10.


[2]顾勇.摩擦行为在塑性成形中的处理研究
[J].机械制造, 2018, 56(12):69-72.

Gu Y. Reaearch on the treatment of friction behavior in plastic forming
[J]. Machinery, 2018, 56(1):69-72.


[3]翁克索夫 E П.塑性的工程理论
[M]. 北京:科学出版社, 1963.

E. П. Onkosov. The Engineering Theory of Plasticity
[M]. Beijing: Science Press, 1963.


[4]陈芳祖, 李光耀, 杨海. 基于复杂接触摩擦的圆柱体镦粗的上限解
[J]. 湖南大学学报:自然科学版, 2008, 35(1):6-8.

Chen F Z, Li G Y, Yang H. Upper-bound solutions of the cylinder upsetting based on the complicated contact friction
[J]. Journal of Hunan University: Natural Science Edition, 2008, 35(1):6-8.


[5]陆璐, 王照旭, 崔红霞, 等. 塑性有限元在金属体积成形过程中应用的进展
[J]. 材料导报, 2016, 30(1):106-110.

Lu L, Wang Z X, Cui H X, et al. Progress of application of finite element method in metals massive forming process
[J]. Materials Guide, 2016, 30(1):106-110.


[6]詹梅, 董赟达, 翟卓蕾, 等. 塑性成形快速数值仿真方法的研究进展
[J]. 机械工程学报, 2022, 58(16):2-20.

Zhan M, Dong Y D, Zhai Z L, et al. Review on fast numerical simulation method for plastic forming
[J]. Journal of Mechanical Engineering, 2022, 58(16):2-20.


[7]孟丽芬, 胡成亮, 赵震. 金属塑性成形中摩擦模型的研究进展
[J]. 模具工业, 2014, 40(4):1-7.

Meng L F, Hu C L, Zhao Z. Research progress of friction model in metal plastic forming
[J]. Die & Mould Industry, 2014, 40(4):1-7.


[8]Zhang D W, Yang H. Analytical and numerical analyses of local loading forming process of T-shape component by using coulomb, shear and hybrid friction models
[J]. Tribology International, 2015,92:259-271. 


[9]Oden J T, Pires E B. Algorithms and numerical results for finite element approximations of contact problems with non-classical friction laws
[J]. Computers & Structures, 1984, 19(1):137-147.


[10]Kobayashi S, Oh S, Altan T. Metal Forming and the Finite-element Method
[M]. New York: Oxford University Press, 1989.


[11]陈文康,丁亮亮,张锐,等.基于黏结-滑移摩擦模型的304不锈钢切削力仿真研究
[J].润滑与密封, 2022,47(8):100-106.

Chen W K, Ding L L, Zhang Y, et al. Simulation research on cutting forces of 304 stainless steel based on sticking-sliding friction model
[J]. Lubrication Engineering, 2022, 47(8):100-106.


[12]Wang J, Liu X, Sun X. Study on asymmetrical cold rolling considered sticking friction
[J]. Journal of Materials Research and Technology, 2020, 9(6):14131-14141.


[13]Qwamizadeh M, Kadkhodaei M, Salimi M. Slab analysis of asymmetrical rolling of bonded two-layer sheets
[J]. ISIJ International, 2013, 53(2):265-273.


[14]刘桂花, 冯再新, 于晓东,等. 复杂盘类件塑性成形过程中的省力成形方法
[J]. 锻压技术, 2011, 36(5):1-4.

Liu G H, Feng Z X, Yu X D, et al. Less-loading method of complex disc components in plastic forming process
[J]. Forging & Stamping Technology, 2011, 36(5):1-4.


[15]汪大年. 金属塑性成形原理
[M]. 北京:机械工业出版社, 1986.

Wang D N. Principles of Plastic Forming of Metals
[M]. Beijing: Mechanical Industry Press, 1986.


[16]武恭, 姚良均, 李震夏,等. 铝及铝合金材料手册
[M]. 北京:科学出版社, 1994.

Wu G, Yao L J, Li Z X, et al. Handbook of Aluminum and Aluminum Alloy Materials
[M]. Beijing: Science Press, 1994.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9