[1]刘春飞. 新一代运载火箭箱体材料的选择[J]. 航空制造技术, 2003, (2): 22-27.
Liu C F. Material selection for new-type launch vehicle tank [J]. Aeronautical Manufacturing Technology, 2003, (2): 22-27.
[2]海丰龙, 苏玉长, 廖思敏, 等. 微观组织对2A14铝合金轮毂力学性能和腐蚀性能的影响[J]. 有色金属工程, 2020, 10(8): 45-51.
Hai F L, Su Y C, Liao S M, et al.Effect of microstructure on mechanical and corrosion properties of 2A14 aluminum alloy wheels [J]. Nonferrous Metals Engineering, 2020, 10(8): 45-51.
[3]Kaibyshev R, Sitdikov O, Mazurina I, et al. Deformation behavior of a 2219 Al alloy[J]. Materials Science and Engineering:A, 2002, 334(1-2): 104-113.
[4]杨晓禹,高宝亭, 刚建伟, 等. 2219铝合金T87状态板材生产过程中的热处理工艺研究[J]. 轻合金加工技术, 2019, 47(6): 30-35.
Yang X Y, Gao B T, Gang J W, et al. Study on heat treatment technology of 2219-T87 aluminum alloy plate in production process [J]. Light Alloy Fabrication Technology, 2019, 47(6): 30-35.
[5]金淳, 黄亮, 李建军, 等. 不同热处理状态下成形速率对2219铝合金成形极限的影响[J].塑性工程学报, 2017, 24(1): 125-132.
Jin C, Huang L, Li J J, et al. Influence of forming rate on forming limit of 2219 aluminum alloy under different heat treatment conditions [J]. Journal of Plasticity Engineering, 2017, 24(1): 125-132.
[6]田荣臻, 王祝堂. 铝合金及其加工手册[M]. 长沙: 中南大学出版社, 2000.
Tian R Z, Wang Z T. Aluminum Alloy and Processing Manual [M]. Changsha: Central South University Press, 2000.[7]陈镇扬, 彭文飞, 牛波凯, 等. 超大型环形件用2219铝合金的热变形本构方程及热加工图[J]. 塑性工程学报, 2020, 27(4): 83-92.
Chen Z Y, Peng W F, Niu B K, et al. Hot deformation constitutive equation and hot processing map of 2219 aluminum alloy for super large rings [J]. Journal of Plasticity Engineering, 2020, 27(4): 83-92.
[8]马云龙, 陈送义, 王习锋, 等. 淬火水温对2219铝合金锻环组织和力学性能的影响[J]. 湖南大学学报:自然科学版, 2020, 47(8): 118-123.
Ma Y L, Chen S Y, Wang X F, et al. Effect of quenching water temperature on microstructure and mechanical property of 2219 aluminum alloy forging ring [J]. Journal of Hunan University:Natural Science Edition, 2020, 47(8): 118-123.
[9]王健, 卢雅琳, 周刚, 等. 热轧工艺对2219 铝合金组织和力学性能的影响[J]. 金属热处理, 2018, 43(10): 98-103.
Wang J, Lu Y L, Zhou G, et al. Effect of hot rolling on microstructure and mechanical properties of 2219 aluminum alloy [J]. Heat Treatment of Metals, 2018, 43(10): 98-103.
[10]姚梦, 张文学, 马康, 等. 锻造工艺对2219铝合金焊接法兰组织与性能的影响[J]. 塑性工程学报, 2022, 29(4): 39-44.
Yao M, Zhang W X, Ma K, et al. Effect of forging process on microstructure and properties of 2219 aluminum alloy welded flange [J]. Journal of Plasticity Engineering, 2022, 29(4): 39-44.
[11]GB/T 3190—2020,变形铝及铝合金化学成分[S].
GB/T 3190—2020, Chemical composition of wrought aluminium and aluminium alloys [S].
[12]GB/T 228.1—2021,金属材料拉伸试验第1部分:室温试验方法[S].
GB/T 228.1—2021,Metallic materials—Tensile testing—Part 1:Method of test at room temperature [S].
[13]洪慎章, 李名绕. 锻造技术速查手册[M]. 北京:机械工业出版社, 2015.
Hong S Z, Li M R. Quick Reference Manual for Forging Techniques [M]. Beijing:China Machine Press, 2015.
[14]中国机械工程学会塑性工程分会. 锻压手册 第1卷:锻造 [M]. 3版. 北京:机械工业出版社, 2008.
China Society for Technology of Plasticity, CMES. Forging Handbook Volume 1:Forging [M]. 3rd Edition. Beijing:China Machine Press, 2008.
[15]GJB 2057A—2018, 航天用2219铝合金锻件规范[S].
GJB 2057A—2018, Specification for aluminium alloy 2219 forgings for aerospace [S].
[16]邹杰, 彭文飞, 陈镇扬. 大型环形件用2219铝合金的动态再结晶行为[J]. 机械工程材料, 2021, 45(8): 37-44.
Zou J, Peng W F, Chen Z Y. Dynamic recrystallization behavior of 2219 aluminum alloy for large-scale rings [J]. Materials for Mechanical Engineering, 2021, 45(8): 37-44.
[17]周鹏, 信瑞山, 邱垚, 等. 大型锻件内部孔隙性缺陷变化对冲击性能的影响[J]. 大型铸锻件, 2021, (3): 15-18.
Zhou P, Xin R S, Qiu Y, et al. Influence of internal porosity defect variation on impact properties of large forgings [J]. Heavy Casting and Forging, 2021, (3): 15-18.
|