网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
锻造工艺对大规格2219铝合金锻环综合力学性能的影响
英文标题:Influence of forging process on comprehensive mechanical properties for large-size 2219 aluminum alloy forging rings
作者:王博 边颖帅 岳战国 王亚安 郭小敏 刘建林 李艳 
单位:西安航空制动科技有限公司 
关键词:2219铝合金 锻造工艺 力学性能 锻造比 锻环 
分类号:TG319
出版年,卷(期):页码:2023,48(11):35-39
摘要:

采用1 t电液自由锻锤制备了大规格2219铝合金锻环(Φ690 mm×Φ448 mm×75 mm),研究了2219铝合金锻环的不同锻造工艺,检测了锻环切向、径向以及轴向的室温力学性能,分析了不同锻造工艺下的总锻造比对锻环抗拉强度、规定非比例延伸强度和伸长率的影响。结果表明:随总锻造比增大,锻环的切向、径向以及轴向的抗拉强度先增加后趋于稳定,规定非比例延伸强度和伸长率先增加后减小,因此,适当地增加总锻造比有利于提高锻环的综合力学性能。当采用对原料进行径向十字锻造后,再进行连续镦粗、冲孔、扩孔以及T6态热处理的工艺方案,其总锻造比为9.8,制备得到的大规格2219铝合金锻环的综合力学性能最优,且远超GJB 2057A—2018中的要求。

The large-size 2219 aluminium alloy forging rings (Φ690 mm×Φ448 mm×75 mm) was prepared by 1 t electro-hydraulic free forging hammer, and the different forging processes of 2219 aluminum alloy forging rings were studied. Then, the tangential, radial and axial mechanical properties of forging rings  at room temperature were detected, and the influences of total forging ratio on tensile strength, specified non-proportional extension strength and elongation of forging rings under different processes were analyzed. The results show that with the increasing of the total forging ratio, the tensile strengths in the tangential, radial and axial directions increase first and then become stable, and the specified non-proportional extension strength and elongation increase first and then decrease. Thus, appropriately increasing the total forging ratio is conducive to improve the comprehensive mechanical properties of forging rings. When the process scheme that the raw material was first processed by radial cross forging and then upsetting, punching, hole expansion and T6 state heat treatment was used, its total forging ratio is 9.8, the comprehensive mechanical properties of the prepared large-size 2219 aluminum alloy forging rings are optimal and far exceed the requirements in GJB 2057A—2018. 

基金项目:
作者简介:
作者简介:王博(1995-),男,硕士,工程师,E-mail:447641988@qq.com;通信作者:岳战国(1986-),男,硕士,高级工程师,E-mail:784244507@qq.com
参考文献:

[1]刘春飞. 新一代运载火箭箱体材料的选择[J]. 航空制造技术, 2003, (2): 22-27.


Liu C F. Material selection for new-type launch vehicle tank [J]. Aeronautical Manufacturing Technology, 2003, (2): 22-27.

[2]海丰龙, 苏玉长, 廖思敏, 等. 微观组织对2A14铝合金轮毂力学性能和腐蚀性能的影响[J]. 有色金属工程, 2020, 10(8): 45-51.

Hai F L, Su Y C, Liao S M, et al.Effect of microstructure on mechanical and corrosion properties of 2A14 aluminum alloy wheels [J]. Nonferrous Metals Engineering, 2020, 10(8): 45-51.

[3]Kaibyshev R, Sitdikov O, Mazurina I, et al. Deformation behavior of a 2219 Al alloy[J]. Materials Science and Engineering:A, 2002, 334(1-2): 104-113.

[4]杨晓禹,高宝亭, 刚建伟, 等. 2219铝合金T87状态板材生产过程中的热处理工艺研究[J]. 轻合金加工技术, 2019, 47(6): 30-35.

Yang X Y, Gao B T, Gang J W, et al. Study on heat treatment technology of 2219-T87 aluminum alloy plate in production process [J]. Light Alloy Fabrication Technology, 2019, 47(6): 30-35.

[5]金淳, 黄亮, 李建军, 等. 不同热处理状态下成形速率对2219铝合金成形极限的影响[J].塑性工程学报, 2017, 24(1): 125-132.

Jin C, Huang L, Li J J, et al. Influence of forming rate on forming limit of 2219 aluminum alloy under different heat treatment conditions [J]. Journal of Plasticity Engineering, 2017, 24(1): 125-132.

[6]田荣臻, 王祝堂. 铝合金及其加工手册[M]. 长沙: 中南大学出版社, 2000.

Tian R Z, Wang Z T. Aluminum Alloy and Processing Manual [M]. Changsha: Central South University Press, 2000.[7]陈镇扬, 彭文飞, 牛波凯, 等. 超大型环形件用2219铝合金的热变形本构方程及热加工图[J]. 塑性工程学报, 2020, 27(4): 83-92.

Chen Z Y, Peng W F, Niu B K, et al. Hot deformation constitutive equation and hot processing map of 2219 aluminum alloy for super large rings [J]. Journal of Plasticity Engineering, 2020, 27(4): 83-92.

[8]马云龙, 陈送义, 王习锋, 等. 淬火水温对2219铝合金锻环组织和力学性能的影响[J]. 湖南大学学报:自然科学版, 2020, 47(8): 118-123.

Ma Y L, Chen S Y, Wang X F, et al. Effect of quenching water temperature on microstructure and mechanical property of 2219 aluminum alloy forging ring [J]. Journal of Hunan University:Natural Science Edition, 2020, 47(8): 118-123.

[9]王健, 卢雅琳, 周刚, 等. 热轧工艺对2219 铝合金组织和力学性能的影响[J]. 金属热处理, 2018, 43(10): 98-103.

Wang J, Lu Y L, Zhou G, et al. Effect of hot rolling on microstructure and mechanical properties of 2219 aluminum alloy [J]. Heat Treatment of Metals, 2018, 43(10): 98-103.

[10]姚梦, 张文学, 马康, 等. 锻造工艺对2219铝合金焊接法兰组织与性能的影响[J]. 塑性工程学报, 2022, 29(4): 39-44.

Yao M, Zhang W X, Ma K, et al. Effect of forging process on microstructure and properties of 2219 aluminum alloy welded flange [J]. Journal of Plasticity Engineering, 2022, 29(4): 39-44.

[11]GB/T 3190—2020,变形铝及铝合金化学成分[S].

GB/T 3190—2020, Chemical composition of wrought aluminium and aluminium alloys [S].

[12]GB/T 228.1—2021,金属材料拉伸试验第1部分:室温试验方法[S].

GB/T 228.1—2021,Metallic materials—Tensile testing—Part 1:Method of test at room temperature [S].

[13]洪慎章, 李名绕. 锻造技术速查手册[M]. 北京:机械工业出版社, 2015.

Hong S Z, Li M R. Quick Reference Manual for Forging Techniques [M]. Beijing:China Machine Press, 2015.

[14]中国机械工程学会塑性工程分会. 锻压手册 第1卷:锻造 [M]. 3版. 北京:机械工业出版社, 2008.

China Society for Technology of Plasticity, CMES. Forging Handbook Volume 1:Forging [M]. 3rd Edition. Beijing:China Machine Press, 2008.

[15]GJB 2057A—2018, 航天用2219铝合金锻件规范[S].

GJB 2057A—2018, Specification for aluminium alloy 2219 forgings for aerospace [S].

[16]邹杰, 彭文飞, 陈镇扬. 大型环形件用2219铝合金的动态再结晶行为[J]. 机械工程材料, 2021, 45(8): 37-44.

Zou J, Peng W F, Chen Z Y. Dynamic recrystallization behavior of 2219 aluminum alloy for large-scale rings [J]. Materials for Mechanical Engineering, 2021, 45(8): 37-44.

[17]周鹏, 信瑞山, 邱垚, 等. 大型锻件内部孔隙性缺陷变化对冲击性能的影响[J]. 大型铸锻件, 2021, (3): 15-18.

Zhou P, Xin R S, Qiu Y, et al. Influence of internal porosity defect variation on impact properties of large forgings [J]. Heavy Casting and Forging, 2021, (3): 15-18.
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9