网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
7075铝合金室温等通道转角拉伸模拟与试验
英文标题:Simulation and experiment on equal channel angular drawing for 7075 aluminum alloy at room temperature
作者:陈细林 何涛 霍元明 杜向阳 张俊杰 李健 张超 
单位:上海工程技术大学 
关键词:7075铝合金 等通道转角拉伸 超细晶 不均匀度系数 断面收缩率 
分类号:TG146.2+1
出版年,卷(期):页码:2023,48(11):67-72
摘要:

采用有限元软件Deform-3D对7075铝合金室温等通道转角拉伸过程进行了数值模拟,分析了室温条件下金属流动、最大主应力、等效应力以及等效应变的分布规律,揭示了材料的变形机理。利用等通道转角拉伸试验,验证了7075铝合金变形模拟结果的准确性。结果表明:模具出、入口的金属流动速度差使试样在大变形区出现缩颈,试样横截面的断面收缩率为17.97%;内、外模角区域的剪切力分布不均引起横截面呈椭圆形;在金属流动速度差和剪切力分布不均的共同作用下,大变形区出现明显弯曲。变形开始阶段,内、外模角区域的应力状态复杂,同时转角区域所产生的拉应力最大,导致试样在难变形区与大变形区交界处最容易产生裂纹并发生断裂,同时在大变形区靠近内模角的表面容易产生损伤。变形过程中,试样的等效应力和等效应变分布呈现不均匀现象,其横截面表面处的等效应变高于内部的数值,其大变形区等效应变不均匀度系数为0.85,优于同参数的等通道转角挤压的1.46。等通道转角拉伸试验后,试样无明显的飞边与毛刺,横截面的断面收缩率为17.49%,与模拟的结果相吻合。

The equal channel angular drawing process of 7075 aluminum alloy at room temperature was simulated numerically by finite element software Deform-3D, and the distribution laws of metal flow, maximum principal stress, equivalent stress and equivalent strain at room temperature were analyzed to reveal the deformation mechanism of material. Then, the accuracy of the deformation simulation results for 7075 aluminum alloy was verified by the equal channel angular drawing experiment. The results show that the metal flow velocity difference between inlet and outlet of die causes the sample to shrink in the large deformation zone, and the cross-sectional shrinkage rate of sample is 17.97%. The uneven distribution of shear force in the inner and outer die corner zones results in an elliptical cross-section. Under the combined action of metal flow velocity difference and uneven shear force distribution, obvious bending occurs in the large deformation zone. At the beginning of deformation, the stress state in the inner and outer die corner zones is complex, and the tensile stress generated in the corner zone is the highest, resulting in cracks and fractures at the junction of the zone that is difficult to deform and the large deformation zone. At the same time, damage is prone to occur on the surface near the inner die corner in the large deformation zone. During the deformation process, the equivalent stress and equivalent strain distributions of sample show an uneven phenomenon. The equivalent strain at the cross-sectional surface is higher than the internal value, and the equivalent strain unevenness coefficient in the large deformation zone is 0.85, which is better than 1.46 of equal channel angular pressing with the same parameters. After the equal channel angular drawing experiment, the sample has no obvious flash edges and burrs, and the cross-sectional shrinkage rate is 17.49%, which is consistent with the simulation results.

基金项目:
国家自然科学基金资助项目(52275350);上海工程技术大学国际合作科研平台建设项目(0301006)
作者简介:
作者简介:陈细林(1993-),男,硕士研究生,E-mail:3084510981@qq.com;通信作者:何涛(1979-),男,博士,教授,E-mail:hetao@sues.edu.cn
参考文献:

[1]凡晓波. 2195铝锂合金板材热变形-淬火复合成形规律与强化机制[D].哈尔滨:哈尔滨工业大学, 2016.


Fan X B. Forming Behavior and Strengthening Mechanism for Integrated Process of Hot Deformation-Quenching of 2195 Al-Li Alloy Sheet [D]. Harbin:Harbin Institute of Technology, 2016.

[2]Jia D S, He T, Song M, et al. Effects of equal channel angular pressing and further cold upsetting process to the kinetics of precipitation during aging of 7050 aluminum alloy[J]. Journal of Materials Research and Technology, 2023, 26(1): 5126-5140.

[3]Rokni M R, Zarei H A, Roostaei A A, et al. An investigation into the hot deformation characteristics of 7075 aluminum alloy[J]. Materials & Design, 2011, 32(4): 2339-2344. 

[4]Segal V M. Materials processing by simple shear[J]. Materials Science and Engineering: A, 1995, 197(2): 157-164.

[5]Zisman A A, Rybin V V, Boxel S V, et al. Equal channel angular drawing of aluminium sheet[J]. Materials Science and Engineering: A, 2006, 427(1-2): 123-129.

[6]Chakkingal U, Suriadi A B, Thomson P F. Microstructure development during equal channel angular drawing of Al at room temperature[J]. Scripta Materialia, 1998, 39(6): 677-684.

[7]Chakkingal U, Suriadi A B, Thomson P F. The development of microstructure and the influence of processing route during equal channel angular drawing of pure aluminum[J]. Materials Science and Engineering: A, 1999, 266(1-2): 241-249.

[8]León J, Luis-Pérez C J. Analysis of stress and strain in the equal channel angular drawing process[J]. Materials Science Forum, 2006, 526: 19-24.

[9]Volokitina I E, Volokitin A V, Naizabekov A B,et al. Change in structure and mechanical properties of grade A0 aluminum during implementation of a combined method of ECAE-drawing deformation[J]. Metallurgist, 2020, 63(9-10): 978-983.

[10]Naizabekov A, Lezhnev S, Volokitin A, et al. Analysis of the influence of new combined process “equal channel angular pressing-drawing” on the microstructure and properties of deformed wire[J]. Civil Engineering and Construction, 2016, (5): 24-28.

[11]Naizabekov A, Volokitina I, Panin E,et al. Computer simulation of combined deformation method “ECA-pressing-drawing”[J]. Journal of Chemical Technology and Metallurgy, 2020, 55(3): 91-94, 129.

[12]孙安娜,何涛,霍元明,等. 不同路径下等通道转角挤压变形规律研究[J]. 塑性工程学报, 2019, 26(6): 16-21.

Sun A N, He T, Huo Y M,et al. Study on deformation law of equal channel angular pressing under different paths [J].Journal of Plasticity Engineering,2019,26(6):16-21.

[13]张苏鹏,王军丽,章震威,等. 复合镦挤法制备超细晶1060铝合金的有限元模拟[J]. 材料热处理学报, 2020, 41(5): 168-176.

Zhang S P, Wang J L, Zhang Z W, et al. Finite element simulation for preparation of ultra-fine grain 1060 aluminum alloy by cyclic equal channel compression [J]. Transactions of Materials and Heat Treatment, 2020, 41(5): 168-176.

[14]Gao J Y,He T,Huo Y M, et al. Comparison of modified Mohr-coulomb model and Bai-Wierzbicki model for constructing 3D ductile fracture envelope of AA6063[J]. Chinese Journal of Mechanical Engineering, 2021, 34(2): 233-245.

[15]赵小莲,陈娜,赵宁宁. 大尺寸纯铝棒材等径角挤压计算机模拟[J]. 广西大学学报:自然科学版, 2013, 38(2): 461-466.

Zhao X L, Chen N, Zhao N N. Computer simulation of equal channel angular pressing for large-sized pure aluminum bar [J]. Journal of Guangxi University: Natural Science Edition, 2013, 38(2): 461-466.

[16]蒋汶桓,杨欢,温良英,等. 挤压速度对Ti6Al4V钛合金等通道转直角挤压过程影响的数值模拟[J]. 重庆大学学报:自然科学版, 2019, 42(10): 31-41.

Jiang W H, Yang H, Wen L Y, et al. Numberical simulation of equal-channel angular pressing process of Ti6Al4V titanium alloy at a right angle and different extrussion speed [J]. Journal of Chongqing University:Natural Science Edition, 2019, 42(10): 31-41.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9