网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
TC4钛合金连接板抽芯铆接数值模拟
英文标题:Numerical simulation on core riveting for TC4 titanium alloy connecting plate
作者:黄伟 古忠涛 陈薄 赵天 
单位:西南科技大学 
关键词:TC4钛合金  抽芯铆接  应力集中  残余应力  残余应变 
分类号:TG938
出版年,卷(期):页码:2023,48(11):95-103
摘要:

以某型高速战机的TC4钛合金蒙皮的抽芯铆接工艺为研究对象,基于ABAQUS有限元软件对TC4钛合金连接板的抽芯铆接过程进行了数值模拟,并通过抽芯铆接试验验证了有限元模型的准确性,分析探讨了抽芯铆钉和连接板的变形情况、残余应力和残余应变。结果表明:在抽芯铆接过程中,钉杆断颈槽部位、锁紧环、镦头部位和铆钉孔附近产生了明显的应力集中;越靠近镦头部位,金属材料流动越剧烈。抽芯铆接完成后,残余应力主要分布在钉杆断颈槽部位、锁紧环、镦头部位、铆钉孔附近,其中,钉杆断裂位置的残余应力最大,约为1015 MPa;残余应变主要分布在镦头部位、锁紧环、铆钉孔附近,其中,镦头部位残余应变最大,约为0.49。

For the core riveting process of TC4 titanium alloy skin of a certain high-speed aircraft, the core riveting process of TC4 titanium alloy connecting plate was numerically simulated by finite element software ABAQUS. Then, the accuracy of finite element model was verified through core riveting tests, and the deformation condition, residual stress and residual strain of core rivet and connecting plate were analyzed and discussed. The results show that during the core riveting process, the obvious stress concentration occurs near the broken neck groove of nail rod, locking ring, rivet head and rivet hole. The closer to the rivet head, the more violent the metal material flows. After the core riveting is completed, the residual stress is mainly distributed in the broken neck groove of nail rod, locking ring, rivet head and rivet hole. Among them, the residual stress at the broken position of nail rod is the maximum value, namely, about 1015 MPa. The main distribution areas of residual strain are around the rivet head, locking ring and rivet hole. Among them, the residual strain at the rivet head is the maximum value, about 0.49.

基金项目:
作者简介:
作者简介:黄伟(1993-),男,硕士,E-mail:1366156515@qq.com;通信作者:古忠涛(1970-),男,博士,副教授,E-mail:guzhongtao2005@163.com
参考文献:

[1]高昆, 齐乐华, 郁大照, 等. 基于复合油雾喷射润滑的飞机钛合金蒙皮原位钻削技术研究[J]. 机械工程学报, 2015, 51(15): 198-204.


Gao K, Qi L H, Yu D Z, et al. Study on the in situ drilling technology used in titanium alloy thin-walled structure of plane based on combined oil mist-jet [J]. Journal of Mechanical Engineering, 2015, 51(15): 198-204.

[2]陈兴安. 机械锁紧鼓包型抽芯铆钉[D]. 西安: 西北工业大学, 2002.

Chen X A. The Mechanical Locked Spindle and Bulbed Blind Rivet[D]. Xi′an: Northwestern Polytechnical University, 2002.

[3]常正平, 王仲奇, 李诚, 等. 飞机薄壁件铆接过程变形分析与数值模拟[J]. 航空制造技术, 2016, 59(7): 82-86.

Chang Z P,Wang Z Q,Li C, et al. Deformation analysis and numerical simulation of riveting process for aircraft thin-walled parts[J]. Aeronautical Manufacturing Technology, 2016, 59(7): 82-86.

[4]Lei C Y, Bi Y B, Li J X. Continuous numerical analysis of slug rivet installation process using parameterized modeling method[J]. Coatings, 2021, 11(2): 189-212.

[5]Nejad R M, Berto F, Tohidi M. Fatigue performance prediction of Al-alloy 2024 plates in riveted joint structure[J]. Engineering Failure Analysis, 2021, 126: 105439-105452.

[6]Yu H D, Zheng B, Xu X, et al. Residual stress and fatigue behavior of riveted lap joints with various riveting sequences, rivet patterns, and pitches[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2019, 233(12): 2306-2319.

[7]Pan M H, Tang W C, Xing Y, et al. Numerical simulation analysis for deformation deviation and experimental verification for an antenna thin-walled parts considering riveting assembly with finite element method[J]. Journal of Central South University, 2018, 25(1): 60-77.

[8]Zhao A N, Zhang Y L, Zhu C R, et al. Effect of the position of the boundary rivets on the quality of riveted single strap butt joints[J]. Materials, 2021, 14(18): 5127-5143.

[9]康永刚, 李春生, 陈希多, 等. 航空大壁板装配连接局部变形数值建模与仿真分析[J]. 航空制造技术, 2020, 63(3): 45-52.

Kang Y G, Li C S, Chen X D, et al. Numerical modeling and simulation analysis of local deformation of assembly connection of aviation large walled panel[J]. Aeronautical Manufacturing Technology, 2020, 63(3): 45-52.

[10]段超祺, 肖敏, 黄鑫宇, 等. 电磁铆接过程有限元仿真[J]. 建模与仿真, 2020, 9(2): 178-185.

Duan C Q, Xiao M, Huang X Y, et al. The finite element simulation during electromagnetic riveting[J]. Modeling and Simulation, 2020, 9(2): 178-185.

[11]黄志超, 谢春辉, 吕世亮. 拉铆工艺过程数值模拟及实验[J]. 塑性工程学报, 2014, 21(4): 28-32.

Huang Z C, Xie C H, Lyu S L. Numerical simulation and experiment on blind riveting process[J]. Journal of Plasticity Engineering, 2014, 21(4): 28-32.

[12]张德伟, 丛述玲, 田春雨, 等. 抽芯拉铆过程铆体变化的数值模拟[J]. 汽车实用技术, 2018, (20): 110-112.

Zhang D W, Cong S L, Tian C Y, et al. Numerical simulation of rivet body change on blind rivets with break pull mandrel process[J]. Automobile Applied Technology, 2018, (20): 110-112.

[13]Li S P, Zhang S G, Li H, et al. Numerical and experimental investigation of fitting tolerance effects on bearing strength of CFRP/Al single-lap blind riveted joints[J]. Composite Structures, 2022, 281: 115022-115034.

[14]惠旭龙, 牟让科, 白春玉, 等. TC4钛合金动态力学性能及本构模型研究[J]. 振动与冲击, 2016, 35(22): 161-168.

Hui X L, Mou R K, Bai C Y, et al. Dynamic mechanical property and constitutive model for TC4 titanium alloy[J]. Journal of Vibration and Shock, 2016, 35(22): 161-168.

[15]邓将华, 唐超, 李春峰, 等. TA1本构模型的确定[J]. 塑性工程学报, 2012, 19(6): 114-117.

Deng J H, Tang C, Li C F, et al. Determination of TA1 constitutive relation[J]. Journal of Plasticity Engineering, 2012, 19(6): 114-117.

[16]余祥峰. 钛合金铆钉电磁铆接破坏行为研究[D]. 福州: 福州大学, 2014. 

Yu X F. Investigation on Failure Behavior of Titanium Alloy Rivet in Electromagnetic Riveting[D]. Fuzhou: Fuzhou University, 2014.

[17]潘克强. A286高温合金切削性能有限元仿真分析[J]. 河南科技, 2020,(22): 29-31.

Pan K Q. Finite element simulation of A286 superalloy cutting performance [J]. Henan Science and Technology, 2020,(22): 29-31.

[18]王立洋. 抗拉型抽芯铆钉钉套局部退火工艺设备研制[D]. 贵阳: 贵州大学, 2015.

Wang L Y. Development of Local Annealing Process Equipment for Tensile Blind Rivet Sleeve [D]. Guiyang: Guizhou University, 2015.

[19]张天朋. 铆接角度与方向对连接件疲劳性能的影响[D]. 杭州: 浙江大学, 2017.

Zhang T P. Influence of Riveting Angle and Direction on Fatigue Performance of Connectors[D]. Hangzhou: Zhejiang University, 2017.

[20]Q/WST 01—2016, 航空用钛合金紧固件抽芯铆钉[S].

Q/WST 01—2016, Titanium alloy fasteners for aviation—Blind rivet[S].
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9