网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
400 kJ对击式液压模锻锤动力学参数优化
英文标题:Kinetic parameters optimization on 400 kJ counterblow hydraulic die forging hammer
作者:弓成司1 刘志奇1 张宝成2 朱文渊3 
单位:1.太原科技大学 2. 太重榆液长治液压有限公司 3.安阳锻压数控设备有限公司 
关键词:对击式液压模锻锤 打击能量 打击频次 回程速度 振动 
分类号:TS913+.3
出版年,卷(期):页码:2023,48(11):141-150
摘要:

大吨位液压模锻锤由于系统工作压力高、流量大、工作条件恶劣,导致系统振动严重、打击频次低、打击能量不精确,且回程速度较大、撞缸现象严重。以CDKA系列400 kJ对击锤为研究对象,通过动力学分析,构造了优化目标评价函数模型,选取多组值对压强P、液压缸无杆腔直径D和联动油缸直径d4这3个重要参数进行了仿真研究,并优化了对击锤高压大流量液压系统参数。结果表明:最优的参数组合为P=17 MPa、D=Φ300 mm和d4=Φ60 mm,提高了打击频次,达到55次·min-1以上,稳定了打击能量,降低了回程的最终速度,低至1.86 m·s-1,减小了振动程度。

Due to the high working pressure large flow rate and harsh working conditions of the large-tonnage hydraulic die forging hammer, the system vibrates serious, the strike frequency is low, the striking energy is inaccurate, and the return speed is relatively high, resulting in serious cylinder collision phenomenon. Therefore, for CDKA series 400 kJ counterblow hammer, the optimization target evaluation function model was constructed by dynamic analysis, and multiple sets of values were selected for simulation research on three important parameters of pressure P, rodless cavity of hydraulic cylinder D and linkage cylinder diameter d4, and the parameters of high-pressure and large-flow rate hydraulic system for counterblow hammer were optimized. The results show that the optimized parameters conbination is P=17 MPa,D=Φ300 mm,d4=Φ60 mm. The strike frequency is improved of 55 times per min, the strike energy is stabilized, the final speed of return stroke is reduced of 1.86 m·s-1, and the degree of vibration is reduced.

基金项目:
山西省专利转化专项计划项目(202202060)
作者简介:
作者简介:弓成司(1997-),男,硕士研究生,E-mail:gtgt2580@163.com;通信作者:刘志奇(1972-),男,博士,教授,E-mail:liuzhiqi@tyust.edu.cn
参考文献:

[1]金伟. 液压技术的研究现状及发展趋势[J]. 科技创新导报, 2020, 17(9): 97-98.


Jin W. Research status and development trend of hydraulic technology[J]. Science and Technology Innovation Herald, 2020, 17(9): 97-98.

[2]Bodurov P, Penchev T. Industrial rocket engine and its application for propelling of forging hammers[J]. Journal of Materials Processing Technology,2005,161(3):504-508.

[3]高峻,李淼泉. 精密锻造技术的研究进展与发展趋势[J]. 精密成形工程, 2015, 7(6): 37-43, 80.

Gao J,Li M Q. Research progress and development trend of the precision forging technology[J]. Journal of Netshape Forming Engineering, 2015, 7(6): 37-43, 80.

[4]罗文会.制约锻造自动化发展的因素分析[J].锻造与冲压,2021,516(19):20,22,24,26.

Luo W H. The factors restricting the development of forging automatization [J]. Forging & Metalforming, 2021,516(19):20,22,24,26.

[5]Hawryluk M. Review of selected methods of increasing the life of forging tools in hot die forging processes[J]. Archives of Civil and Mechanical Engineering,2016,16(4):845-866.

[6]陈桂芬. 一种锻造用数控全液压模锻锤[P].中国:CN217370269U,2022-09-06. 

Chen G F. A CNC fully hydraulic forging hammer for forging[P]. China: CN217370269U,2022-09-06.

[7]Huang X Q,Hu G,Meng Q K, et al. Impact performance optimization of a YDC valve-type double action hydraulic hammer[J]. Natural Gas Industry B, 2018, 5(5):425-433.

[8]张银娟,刘军,王永科.基于虚拟样机技术的液压模锻锤动态仿真研究[J].煤矿机械,2010,31(3):85-87. 

Zhang Y J, Liu J, Wang Y K. Research on dynamic simulation of hydraulic die forging hammer based on VPT [J]. Coal Mining Machinery,2010,31(3):85-87.

[9]刘军,张银娟,刘福海.液压模锻锤液压控制系统研究[J].锻压装备与制造技术,2010,45(1):68-71. 

Liu J, Zhang Y J, Liu F H. Research on hydraulic control system of hydraulic die forging hammer [J]. China Metalforming Equipment & Manufacturing Technology, 2010,45 (1): 68-71.

[10]姜雪婕. 75 kJ全液压对击锤机架及锤头锤杆的有限元分析[D]. 秦皇岛:燕山大学, 2015.

Jiang X J. Finite Element Analysis of the Frame and Hammer Rod of 75 kJ Fully Hydraulic Die Counter-blow Hammer[D]. Qinghuangdao:Yanshan University, 2015.

[11]刘雷,余心宏,文永洪. 630 kJ对击锤锤杆冲击应力有限元分析及结构改进[J]. 重型机械, 2013,(4): 67-70.

Liu L,Yu X H,Wen Y H. FEM analysis of 630 kJ counter-blow hammer′s rod impact stress and its structural improvement [J]. Heavy Machinery, 2013,(4): 67-70.

[12]李养娟,余意.模锻锤闭式锻造下镶块模模具设计改进[J].锻造与冲压,2019, 464(15):49-50. 

Li Y J, Yu Y. Improvement of the flashless hammer sectional forging die design [J]. Forging & Metalforming, 2019, 464 (15): 49-50.

[13]包弘贤. 液压流道液流特性分析[D]. 大连:大连理工大学, 2018.

Bao H X. Analysis on Fluid Flow Characteristics of Hydraulic Channel [D]. Dalian: Dalian University of Technology, 2018.

[14]张盟盟. 某大型曲轴对击锤模锻成形关键技术研究[D].重庆:重庆大学,2021. 

Zhang M M. Research on the Key Technology of the Forging of a Large Crankshaft with a Counter Hammer [D]. Chongqing: Chongqing University, 2021.

[15]Sadatdiynov K, Cui L Z, Zhang L, et al. An intelligent hybrid method: Multi-objective optimization for MEC-enabled devices of IoE[J]. Journal of Parallel and Distributed Computing,2023,171:1-13.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9