网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于MOGA的拉拔机主机框架轻量化设计
英文标题:Lightweight design on drawing machine host frame based on MOGA
作者:李昆1 2 王宗彦1 2 李梦龙 1 2 李飞3 鲍东辉1 2 高沛1 4 
单位:1.中北大学 机械工程学院 2. 中北大学 数字化设计与制造山西省重点实验室 3.山西利民工业有限责任公司 4.山西职业技术学院 
关键词:液压拉拔机 主机框架 多目标遗传算法 最大等效应力 轻量化 
分类号:TP202.7;TP203;TH164
出版年,卷(期):页码:2023,48(11):151-158
摘要:

为了解决某型1200 t液压拉拔机主机框架材料成本高的问题,以拉拔机主机框架为研究对象,根据其结构特点,运用多目标遗传算法(MOGA)对其进行轻量化设计。利用Workbench对主机框架整体进行静力学结构分析,分析主机框架的最大等效应力。基于以上分析,在满足主机框架强度的情况下,对关键设计尺寸进行优化取值,选择一组最优设计点,并对优化后的主机框架重新进行静力学分析。结果表明:优化后的主机框架最大等效应力为191.86 MPa,可以满足实际使用工况要求,质量减少了39.6%,有效地减少了主机框架质量、降低了材料成本。

In order to solve the problem of high material cost of host frame for a certain type of 1200 t hydraulic drawing machine,for the host frame of drawing machine,according to its structural characteristics, the lightweight design was conducted by the multi-objective genetic algorithm (MOGA). Then, the static structural analysis on the entire host frame was carried out by Workbench,and the maximum equivalent stress of the host frame was analyzed. Furthermore, based on the above analysis,the values of key design dimensions were optimized under the condition that the strength of the host frame was satisfied, a set of optimal design points were selected, and the static analysis of the optimized host frame was re-carried out. The results show that the maximum equivalent stress of the optimized host frame is 191.86 MPa,which can meet the requirements of the actual working conditions, and the mass is reduced by 39.6%,which effectively reduces the mass of the host frame and the material costs.

基金项目:
山西省重点国际科技合作项目(201903D421015); 国家科技部创新方法专项(2020IM020700)
作者简介:
作者简介:李昆(1999-),男,硕士研究生,E-mail:1914748360@qq.com;通信作者:王宗彦(1963-),男,博士,教授,博士生导师,E-mail:iamwangzongyan@sina.com
参考文献:

[1]温景林.金属挤压与拉拔及周期冷轧成型工程学[M].北京:冶金工业出版社,2021.


Wen J L. Metal Extrusion and Drawing and Periodic Cold Rolling Forming Engineering[M]. Beijing: Metallurgical Industry Press,2021.

[2]成大先.机械设计手册[M].北京:化学工业出版社,2016.

Cheng D X. Mechanical Design Manual[M]. Beijing: Chemical Industry Press,2016.

[3]黄志超,彭晓亮,汪伟,等.基于挤压成形再冲压工艺的后悬弹簧连杆轻量化设计方法[J].锻压技术,2021,46(5):25-33.

Huang Z C,Peng X L,Wang W,et al. Lightweight design method on rear suspension spring connecting rod based on extrusion and stamping process [J]. Forging & Stamping Technology,2021,46(5):25-33.

[4]黄红捷,邓大祥,姚英学.基于拓扑优化的工业机器人大臂的轻量化设计与分析[J].工具技术,2021,55(12):77-82.

Huang H J,Deng D X,Yao Y X. Research on lightweight design of industrial robot big arm based on topology optimization[J]. Tool Engineering,2021,55(12):77-82.

[5]晁瑞,李志峰.基于增材制造螺杆转子结构轻量化设计与分析[J].工具技术,2020,54(7):53-56.

Chao R,Li Z F. Lightweight design and analysis of screw rotor structure based on additive manufacturing[J]. Tool Engineering,2020,54(7):53-56.

[6]王彬.某舰载电子设备振动试验夹具设计及分析[J],南京工程学院学报:自然科学版,2020,18(1):79-82.

Wang B. Design and analysis of vibration test fixture for a shipboard electronic equipment [J]. Journal of Nanjing Institute of Technology:Natural Science Edition, 2020,18(1):79-82.

[7]蒋文凯.基于ANSYS的重型框架式制管成型机主机分析与优化[J].锻压装备与制造技术,2021,56(4):42-48.

Jiang W K. Analysis and optimization of mainframe of heavy-duty frame pipe forming machine based on ANSYS[J]. China Metalforming Equipment & Manufacturing Technology,2021,56(4):42-48.

[8]徐双,赵至友,赵国勇,等.重型电动数控螺旋压力机结构设计与有限元分析[J].锻压技术,2022,47(6):193-198.

Xu S,Zhao Z Y,Zhao G Y,et al. Structure design and finite element analysis on heavy duty electric CNC screw press[J]. Forging & Stamping Technology,2022,47(6):193-198.

[9]布申申,田怀文,周杰.基于ANSYS Workbench的停车顶检测车底架优化设计[J].计算机与数字工程,2021,49(4):822-827.

Bu S S,Tian H W,Zhou J. Optimized design of the chassis of the parking roof inspection vehicle based on ANSYS Workbench[J]. Computer & Digital Engineering, 2021,49(4):822-827.

[10]赵铁柱,石端伟.基于ANSYS Workbench的升船机承船厢卧倒门优化设计[J].武汉大学学报:工学版,2014,47(3):378-382.

Zhao T Z,Shi D W. Optimum design of horizontal type gate of shiplift chamber based on ANSYS Workbench[J]. Engineering Journal of Wuhan University,2014,47(3):378-382.

[11]Holland J H.Outline for a logical theory of adaptive systems[J].Journal of the Association for Computing Machinery,1962,9(3):297-314.

[12]张程,贾宝柱,邹佳奇.基于多目标遗传算法的柴电混合动力船舶功率分配优化[J].计算机应用与软件,2021,38(3):26-31,58. 

Zhang C,Jia B Z,Zou J Q. Power distribution optimization of diesel-electric hybrid ship based on multi-objective genetic algorithm[J]. Computer Applications and Software,2021,38(3):26-31,58.

[13]Fonseca C M, Fleming P J.Genetic algorithms for multi-objective optimization: Formulation discussion and generalization[A].Proceedings of the 5th International Conference on Genetic Algorithms[C].San Mateo, 1993.

[14]魏秀然.基于多目标GA的灌区水资源优化管理系统设计与实现[D].郑州:解放军信息工程大学,2008.

Wei X R.Design of Multi-objective Allocation of Irrigation Water Management Systems Based on Genetic Algorithm Optimal Methodology and Its Implementation[D]. Zhengzhou:PLA Information Engineering University,2008.

[15]王宪伦,段奕林.基于MOGA的串联机械臂参数优化设计[J].机械设计与制造工程,2020,49(12):1-4.

Wang X L,Duan Y L. Parameter optimization design of series manipulator based on MOGA [J]. Machine Design and Manufacturing Engineering,2020,49(12):1-4.

[16]王震虎,王万林,张松波,等.基于车身概念模型的白车身主断面尺寸优化[J].汽车工程,2018,40(8):904-911.

Wang Z H,Wang W L,Zhang S B,et al. Size optimization on main cross-sections of body-in-white based on conceptual model for car body[J].Automotive Engineering,2018,40(8):904-911.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9