[1]李明珠,郭秀艳,咸洋,等.模具钢的发展与应用[J]. 理化检验:物理分册, 2012,47(11):702-705.
Li M Z, Guo X Y, Xian Y, et al. Development and application of die steel[J]. Physical Testing and Chemical Analysis Part A:Physical Testing, 2012,47(11):702-705.
[2]阮雪榆,李志刚, 武兵书,等.中国模具工业和技术的发展[J].模具技术, 2001,(2):72-74.
Ruan X Y, Li Z G, Wu B S,et al. Development of China′s mold industry and technology[J]. Die and Mould Technology, 2001,(2):72-74.
[3]訾炳涛,崔建忠,巴启先.脉冲电流和脉冲磁场作用下LY12 铝合金凝固组织的比较[J].热加工工艺, 2000,29(4):3-5.
Zi B T, Cui J Z, Ba Q X. Comparison of the solidified structures in LY12 Al-alloy under pulsed electric current and pulsed magnetic field[J]. Hot Working Technology,2000,29(4):3-5.
[4]Li Q S, Song C J, Li H B, et al. Effect of pulsed magnetic field on microstructure of 1Cr18Ni9Ti austenitic stainless steel[J]. Materials Science and Engineering A, 2007,466:101-105.
[5]Yin Z X, Gong Y Y, Li B, et al. Refining of pure aluminum cast structure by surface pulsed magneto oscillation[J]. Journal of Materials Processing Technology, 2012,212(12):2629-2634.
[6]Zi B T, Ba Q X, Cui J Z, et al. Study on axial changes of as-cast structures of Al alloy sample treated by the novel SPMF technique[J]. Scripta Materialia,2000,43(4):377-380.
[7]Wang B, Yang Y S, Zhou J X, et al. Microstructure refinement of AZ91D alloy solidified with pulsed magnetic field[J]. Transactions of Nonferrous Metals Society of China,2008,18(3):536-540.
[8]汪彬, 杨院生,周吉学, 等.脉冲磁场对Mg-Gd-Y-Zr合金凝固及力学性能的影响[J].稀有金属材料与工程. 2009,38(3):519-522.
Wang B, Yang Y S, Zhou J X, et al. Effect of the pulsed magnetic field on the solidification and mechanical properties of Mg-Gd-Y-Zr alloy[J]. Rare Metal Materials and Engineering, 2009,38(3):519-522.
[9]Ma X P, Li Y J, Yang Y S. Grain refinement effect of pulsed magnetic field on solidified microstructure of superalloy IN718[J]. Journal of Materials Research, 2009,24(10):3174-3181.
[10]Ma X P, Li Y J, Yang Y S. Grain refinement effect of a pulsed magnetic field on as-cast superalloy K417[J]. Journal of Materials Research, 2009,24(8):2670-2676.
[11]Li Y J, Teng Y F, Yang Y S. Refinement mechanism of low voltage pulsed magnetic field on solidification structure of silicon steel[J]. Metals and Materials International, 2014,20(3):527-530.
[12]滕跃飞, 李应举, 冯小辉, 等.脉冲磁场作用下矩形截面宽厚比对K4169 高温合金晶粒细化的影响[J].金属学报,2015,51(7):844-852.
Teng Y F, Li Y J, Feng X H, et al. Effect of rectangle aspect ratio on grain refinement of superalloy K4169 under pulsed magnetic field[J]. Acta Metallurgica Sinica, 2015,51(7):844-852.
[13]郭连平, 尹健, 陈乐平, 等. 脉冲磁场对Mg-Gd-Zn-(Zr)合金组织和性能的影响[J].特种铸造及有色合金, 2013,33(5):480-483.
Guo L P, Yin J, Chen L P, et al. Effect of the pulsed magnetic field on the solidification microstructure and mechanical properties of Mg-Gd-Zn-(Zr) alloy[J]. Special Casting & Nonferrous Alloys, 2013, 33(5):480-483.
[14]Liotti E, Lui A, Vincent R, et al. A synchrotron X-ray radiography study of dendrite fragmentation induced by a pulsed electromagnetic field in an Al-15Cu alloy[J]. Acta Materialia, 2014,70:228-239.
[15]赵志龙,张蓉,刘林,等.强脉冲磁场中Al-Cu共晶定向凝固组织的演变[J].材料研究学报,2005,(2):207-212.
Zhao Z L, Zhang R, Liu L, et al. Evolvement of Al-Cu eutectic unidirectionally solidified morphology in high intensity pulsed magnetic field[J]. Chinese Journal of Materials Research, 2005, (2):207-212.
[16]Song C J, Li Q S, Li H B, et al. Effect of pulse magnetic field on microstructure of austenitic stainless steel during directional solidification[J]. Materials Science and Engineering: A, 2008,485(1-2):403-408.
[17]Li Y J, Teng Y F, Feng X H, et al. Effects of pulsed magnetic field on microsegregation of solute elements in a Ni-based single crystal superalloy[J]. Journal of Materials Science & Technology, 2017, 33(1): 105-110.
[18]张金祥, 黄进峰, 崔华, 等.喷射成形H13钢的高温热变形及组织演变[J].热加工工艺, 2014,43(20):1-5.
Zhang J X, Huang J F, Cui H, et al.High-temperature thermal deformation and microstructure evolution of spray formed H13 tool steel[J]. Hot Working Technology, 2014,43(20):1-5.
[19]Jonas J J, Sellars C M, Tegart W J M G. Strength and structure under hot-working conditions[J]. Metallurgical Reviews, 1969, 14(1): 1-24.
[20]Momeni A, Dehghani K. Characterization of hot deformation behavior of 410 martensitic stainless steel using constitutive equations and processing maps[J]. Materials Science and Engineering: A, 2010, 527(21-22): 5467-5473.
[21]陈雷,王龙妹,杜晓建,等.2205双相不锈钢的高温变形行为[J].金属学报,2010,46(1):52-56.
Chen L, Wang L M, Du X J, et al. Hot deformation behavior of 2205 duplex stainless steel[J].Acta Metallurgica Sinica, 2010, 46(1): 52-56.
[22]McQueen H J, Ryan N D. Constitutive analysis in hot working[J]. Materials Science and Engineering: A, 2002, 322(1-2):43-63.
[23]郝建军,张瑞丰,宋耀辉,等.2205双相不锈钢的热加工图和组织研究[J].锻压技术,2021,46(7):190-198.
Hao J J, Zhang R F, Song Y H, et al. Study on thermal processing diagram and microstructure for 2205 duplex stainless steel[J]. Forging & Stamping Technology, 2021,46(7):190-198.
[24]李慧中, 王海军, 刘楚明, 等. Mg-10Gd-4.8Y-2Zn-0.6Zr合金本构方程模型及加工图[J]. 材料热处理学报, 2010, 31(7):88-93.
Li H Z, Wang H J, Liu C M, et al. Constitutive equation model and processing map for Mg-10Gd-4.8Y-2Zn-0.6Zr alloy[J]. Transactions of Materials and Heat Treatment, 2010, 31(7):88-93.
[25]Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel[J]. Journal of Applied Physics, 1944, 15(1): 22-32.
[26]张晓华, 邱晓刚, 卢国清, 等.应变速率敏感系数(m值)测试方法探讨[J].钢铁钒钛, 2001,(1):63-68.
Zhang X H, Qiu X G, Lu G Q, et al. Study of test and measurement method for coefficient (m value) of strain rate sensitivity[J]. Iron Steel Vanadium Titanium, 2001,(1):63-68.
[27]Prasad Y V R K,Gegel H L,Doraivelu S M,et al. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242 [J].Metallurgical Transactions A, 1984, 15 (10): 1883-1892.
[28]樊明强,毛磊,张雲飞,等.H13钢高温压缩过程中温升对其变形行为及组织的影响[J].钢铁研究学报,2017,29(9):756-761.
Fan M Q, Mao L, Zhang Y F, et al. Effect of temperature rise on deformation behavior and microstructure of H13 steel during high temperature compression process[J]. Journal of Iron and Steel Research, 2017, 29(9): 756-761.
|