网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
某汽轮机叶片热成形工艺研究及优化
英文标题:Research and optimization on thermal forming process for a steam turbine blade
作者:罗应娜 
单位:重庆工业职业技术学院 机械工程与自动化学院 
关键词:汽轮机叶片 热压缩 Hansel-Spittel模型 热冲压 回弹 减薄 
分类号:TG316;TG146.4
出版年,卷(期):页码:2023,48(12):63-71
摘要:

 为提高某汽轮机叶片热冲压成形质量并降低试错成本,首先,通过等温热压缩试验获取了X2Cr11钢在不同温度和应变速率下的应力-应变曲线,并构建了高精度Hansel-Spittel本构模型,等温压缩结果表明,温度和应变速率对材料的应力产生显著影响;随后,基于所建立的本构方程,构建了某汽轮机叶片的热冲压数值仿真模型,初步分析了原工艺存在的问题,包括板料厚度不均匀和显著的回弹效应;最后,提出了一种基于拉丁超立方、有限元仿真、克里金模型和遗传算法的优化策略,成功将最大回弹量控制在1.5 mm以内,最大减薄率控制在3.3%以内。生产试制表明,该策略显著提升了汽轮机叶片的成形质量、降低了试错成本。研究成果为汽轮机叶片的高质量生产提供了有效保障。

 To improve the thermal stamping quality of a certain steam turbine blade and reduce trial-and-error costs, the stress-strain curves of X2Cr11 steel at different temperatures and strain rates were obtained by isothermal thermal compression tests, and a high-precision Hansel-Spittel constitutive model was constructed. Isothermal compression results indicate that the temperature and strain rate have significant effects on stress in material. Then,based on the established constitutive equation, a numerical simulation model of thermal forming for a specific steam turbine blade was constructed. The problem existing in the original process was preliminarily analyzed including uneven sheet thickness and considerable springback effect. Finally, an optimization strategy based on Latin hypercube, finite element simulation, Kriging model and genetic algorithm was proposed. The maximum springback amount is successfully controlled within 1.5 mm, and the maximum thinning rate is controlled within 3.3%. Production trial production shows that this strategy significantly improves the forming quality of steam turbine blades and reduces the trial-and-error costs. Thus, the research results provide an effective guarantee for the high-quality production of steam turbine blades.

基金项目:
重庆市自然科学基金面上项目(CSTB2022NSCQ-MSX1029);重庆市教育委员会科学技术研究计划青年项目(KJQN202203204)
作者简介:
作者简介:罗应娜(1979-),女,学士,副教授 E-mail:lyn3796@163.com
参考文献:

 [1]朱姣, 钟振前, 翟战江, . 叶片开裂失效分析[J]. 物理测试, 2022, 40(1): 46-50.


Zhu J, Zhong Z Q, Zhai Z J, et al. Failure analysis of blade cracking[J]. Physics Examination and Testing, 2022, 40(1): 46-50.


[2]Li X P, Han R H, Xie Y S, et al. Analysis of failure causes of 0Cr19Ni9 blade crack [J]. Materials Science-Medziagotyra, 2022, 28(3): 309-314.


[3]Liu F, Lu Y Z. Numerical simulation of precision forming for blade rotor based on DEFORM [J]. Applied Mechanics and Materials, 2011, 130-134: 2388-2391.


[4]Xiang R, Zhou J, Xiong Y, et al. Hot forming of complex surface of hollow blade back arc based on drawing process [J]. International Journal of Advanced Manufacturing Technology, 2017, 93(9-12):4015-4021.


[5]Gan W, Wagoner R H. Die design method for sheet springback [J]. International Journal of Mechanical Sciences2004, 46(7): 1097-1113.


[6]袁飞, 吕彦明, 胡学超, . 汽轮机叶片精锻模具预补偿方法研究[J]. 现代制造工程, 2020,(5): 113-118,112.


Yuan F, Lyu Y M, Hu X C, et al. Research on pre-compensation method of steam turbine blade precision forging die [J]. Modern Manufacturing Engineering, 2020,(5): 113-118,112.[7]张丰收, 马有福, 降文鹤, . 汽轮机叶片锻压成形参数的灰色多目标优化[J]. 机械设计与制造, 2017,(9): 149-151.


Zhang F S, Ma Y F, Jiang W H, et al. The Optimization for turbine blade forging process parameters based on grey theory [J]. Machinery Design & Manufacture, 2017,(9): 149-151.


[8]徐永锋, 高振桓, 杨明, . 锻造对汽轮机叶片钢力学性能的影响[J]. 东方汽轮机, 2017,(3): 42-46,57.


Xu Y F, Gao Z H, Yang M, et al. Influence of forging on mechanical properties of turbine blade steel [J]. Dongfang Tubrine, 2017,(3): 42-46,57.


[9]刘俊, 盛伟, 施瑞华, . 汽轮机叶片锻造成形数值模拟与工艺优化[J]. 金属加工(热加工), 2016,(11): 38-40.


Liu J, Sheng W, Shi R H, et al. Numerical simulation and process optimization of steam turbine blade forging[J]. MW Metal Forming, 2016,(11): 38-40.


[10]陈学文, 周会军, 陈天安. 基于Hansel-Spittel模型的45Cr4NiMoV合金热变形行为[J]. 河南科技大学学报:自然科学版, 2015, 36(5):1-4,14,117.


Cheng X W, Zhou H J, Chen T A. Hot deformation behavior of 45Cr4NiMoV alloy steel based on Hansel-Spittel model[J]. Journal of Henan University of Science and Technology: Natural Science, 2015, 36(5):1-4,14,117.


[11]陈学文, 杨喜晴, 王纳纳. GCr15SiMn钢的温变形行为及Hansel-Spittel流变应力模型[J]. 金属热处理, 2018, 43(5):34-38.


Chen X W, Yang X Q, Wang N N. Warm deformation behavior and Hansel-Spittel of constitutive model of GCr15SiMn steel[J]. Heat Treatment of Metals, 2018, 43(5):34-38.


[12]高双明,矫阿娇,崔礼春. 某轿车后门内板冲压工艺及整形模具结构优化[J]. 锻压技术,2021,46(1):65-69.


Gao S MJiao A JCui L C. Stamping process and structure optimization of sizing die for inner panel of a car rear door [J]. Forging & Stamping Technology2021,46(1):65-69.


[13]胡开元,王雷刚. 基于响应面法与灰狼优化算法的壳体拉深成形模具优化设计[J]. 锻压技术,2022,47(6):244-250.


Hu K YWang L G. Optimization design on shell deep drawing die based on response surface methodology and grey wolf optimization algorithm[J]. Forging & Stamping Technology,2022,47(6):244-250.


[14]王慧怡,王岫鑫,刘学. 汽车发动机罩的神经网络-强繁殖NSGA-Ⅱ算法冲压参数优化[J]. 锻压技术,2022,47(7):100-106.


Wang H YWang X XLiu X. Parameter optimization on stamping of neutral network-strong reproduction NSGA-II algorithm for automobile engine hood[J]. Forging & Stamping Technology,2022,47(7):100-106.


[15]徐杰. 基于克里金模型和多目标遗传算法的转向节模具参数优化[J]. 锻压技术,2022,47(7):213-219.


Xu J. Optimization on steering knuckle mold parameters based on Kriging model and multi-objective genetic algorithm[J]. Forging & Stamping Technology,2022,47(7):213-219.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9