[1]马晓波,王东新,胡侨丹,等.元素添加强化皱铝合金研究现状[J].稀有金属,2021,45(8):1010-1017.
Ma X B, Wang D X, Hu Q D, et al. Research status of additive elements to strengthen beryllium aluminum alloy[J]. Chinese Journal of Rare Metals, 2021,45(8):1010-1017.
[2]尤晋,龚红英,刘尚保,等. 基于Dynaform及响应面法的6016铝合金散热壳体冲压成形及优化[J].锻压技术,2022, 47(3):54-58.
You J, Gong H Y, Liu S B, et al. Stamping and optimization on 6016 aluminum alloy radiator shell based on Dynaform and response surface method[J]. Forging & Stamping Technology, 2022,47(3): 54-58.
[3]Kim D, Kim H, Kim J H, et al. Modeling of forming limit for multilayer sheets based on strain-rate potentials[J]. International Journal of Plasticity, 2015, 75: 63-99.
[4]Marciniak Z, Kuczyński K. Limit strains in the processes of stretch-forming sheet metal[J]. International Journal of Mechanical Sciences, 1967,9(9):609-620.
[5]Nakazima K, Kikuma T, Hasuka K. Study on the formability of steel sheets[J]. Yawata Technical Report, 1968,284:678-680.
[6]Ma B L, Wan M, Cai Z Y, et al. Investigation on the forming limits of 5754-O aluminum alloy sheet with the numerical Marciniak-Kuczynski approach[J]. International Journal of Mechanical Sciences, 2018,142-143:420-431.
[7]Barata da Rocha A, Santos A D, Teixeira P, et al. Analysis of plastic flow localization under strain paths changes and its coupling with finite element simulation in sheet metal forming[J]. Journal of Materials Processing Technology, 2009,209(11):5097-5109.
[8]Chung K, Lee C, Kim H. Forming limit criterion for ductile anisotropic sheets as a material property and its deformation path insensitivity, Part II: Boundary value problems[J]. International Journal of Plasticity, 2014,58:35-65.
[9]Swift H W. Plastic instability under plane stress[J]. Journal of the Mechanics and Physics of Solids, 1952,1:1-18.
[10]Hill R. On discontinuous plastic states with special reference to lacalized necking in thin sheets[J]. Journal of Mechanics and Physics Solids, 1952,1:19-30.
[11]Wang H B, Yan Y, Han F, et al. Experimental and theoretical investigations of the forming limit of 5754O aluminum alloy sheet under different combined loading paths[J]. International Journal of Mechanical Sciences, 2017,133:147-166.
[12]Basak S, Panda S K. Failure strains of anisotropic thin sheet metals: Experimental evaluation and theoretical prediction[J]. International Journal of Mechanical Sciences, 2019,151:356-374.
[13]马高山,万敏,吴向东.5A90铝锂合金热态下的成形极限图及其计算模型[J].中国有色金属学报,2008,(4):717-721.
Ma G S, Wan M, Wu X D. Forming limit diagram and calculating model for 5A90 Al-Li alloy sheet at elevated temperature[J]. The Chinese Journal of Nonferrous Metals, 2008,(4): 717-721.
[14]马高山,万敏,吴向东.基于M-K模型的铝锂合金热态下成形极限预测[J].中国有色金属学报,2008,(6):980-984.
Ma G S, Wan M, Wu X D. Theoretical prediction of FLDs for Al-Li alloy at elevated temperature based on M-K model[J]. The Chinese Journal of Nonferrous Metals, 2008,(6): 980-984.
[15]杜平梅,郎利辉,刘宝胜,等.基于M-K模型的成形极限预测及参数影响[J].塑性工程学报,2011,18(5):84-89.
Du P M, Lang L H, Liu B S, et al. Theoretical prediction and parameter influence of FLDs based on M-K model[J]. Journal of Plasticity Engineering, 2011, 18(5):84-89.
[16]Li X Q, Song N, Guo G Q, et al. Prediction of forming limit curve (FLC) for Al-Li alloy 2198-T3 sheet using different yield functions[J]. Chinese Journal of Aeronautics, 2013,26(5):1317-1323.
[17]杨希英,郎利辉,刘康宁,等.基于修正M-K模型的铝合金板材成形极限图预测[J].北京航空航天大学学报,2015,41(4):675-679.
Yang X Y, Lang L H, Liu K N, et al. Prediction of forming limit diagram of AA7075-O aluminum alloy sheet based on modified M-K model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(4):675-679.
[18]Nurcheshmeh M, Green D E. Prediction of forming limit curves for nonlinear loading paths using quadratic and non-quadratic yield criteria and variable imperfection factor[J]. Materials & Design, 2016,91:248-255.
[19]Jiao Z H, Lang L H, Zhao X N. 5A06 aluminum-magnesium alloy sheet warm hydroforming and optimization of process parameters[J]. Transactions of Nonferrous Metals Society of China, 2021,31(10):2939-2948.
[20]陈鹏.5A06铝合金凹底筒形件刚柔复合拉深温成形工艺研究[D].哈尔滨:哈尔滨理工大学,2022.
Chen P.Study on Forming Process of 5A06 Aluminum Alloy Concave-bottom Cylindrical Parts with Rigid-flexible Composite Deep Drawing Temperature[D].Harbin: Harbin University of Science and Technology, 2022.
|