网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于M-K理论的5A06铝合金板材温成形极限预测
英文标题:Prediction on warm forming limit for 5A06 aluminum alloy sheet based on M-K theory
作者:李升1 黄晓敏2 王佳鹏2 周福见1 龙莲珠1 杨豆豆1 王宝雨2 
单位:1.北京星航机电装备有限公司 2.北京科技大学 机械工程学院 
关键词:5A06铝合金 成形极限 M-K理论 温成形 厚度不均匀度 
分类号:TG386.V26
出版年,卷(期):页码:2023,48(12):94-99
摘要:

 5A06铝合金的室温成形能力有限,冲压成形易发生破裂,为此对5A06铝合金板材的温成形进行研究,并基于M-K凹槽理论对5A06铝合金板材的成形性能进行预测。首先,采用理论计算和试验相结合的方式,建立了200~300 ℃、0.01~1 s-1条件下5A06铝合金的本构模型;然后,将Swift材料强化模型导入成形极限的推导中,并采用Newton-Raphson迭代法求解得到M-K凹槽理论预测的成形极限图和初始厚度不均匀度f0;最后,对5A06铝合金板材进行Nakajima试验,验证理论预测结果的准确性。结果表明,M-K理论能够有效预测5A06铝合金在实验温度范围内的成形性能。

 The room temperature forming ability of 5A06 aluminum alloy is limited, and it is prone to cracking in stamping, for this problem,the warm forming of 5A06 aluminum alloy sheet was researched, and based on the M-K groove theory, the formability of 5A06 aluminum alloy sheet was predicted. Firstly, a constitutive model of 5A06 aluminum alloy under the conditions of 200-300 ℃ and 0.01-1 s-1 was established by combining theoretical calculation and experiment. Then, the Swift material strengthening model was introduced into the derivation of forming limit, the forming limit diagram and the initial thickness unevenness predicted by the M-K groove theory were obtained by the Newton-Raphson iteration method. Finally, the Nakajima test was conducted on the 5A06 aluminum alloy sheet to verify the accuracy of theoretical prediction results. The results show that the M-K groove theory can effectively predict the formability of 5A06 aluminum alloy within the experimental temperature range.

基金项目:
国家自然科学基金联合基金资助项目(U1564202)
作者简介:
作者简介:李升(1989-),男,博士,高级工程师 E-mail:lishengsir@163.com 通信作者:黄晓敏(1986-),女,博士研究生,工程师 E-mail:B20200250@xs.ustb.edu.cn.
参考文献:

 [1]马晓波,王东新,胡侨丹,等.元素添加强化皱铝合金研究现状[J].稀有金属,202145(8)1010-1017.


Ma X B, Wang D X, Hu Q D, et al. Research status of additive elements to strengthen beryllium aluminum alloy[J]. Chinese Journal of Rare Metals, 202145(8)1010-1017.


[2]尤晋,龚红英,刘尚保,等. 基于Dynaform及响应面法的6016铝合金散热壳体冲压成形及优化[J].锻压技术,2022, 47(3):54-58.


You J, Gong H Y, Liu S B, et al. Stamping and optimization on 6016 aluminum alloy radiator shell based on Dynaform and response surface method[J]. Forging & Stamping Technology, 2022,47(3): 54-58.


[3]Kim D, Kim H, Kim J H, et al. Modeling of forming limit for multilayer sheets based on strain-rate potentials[J]. International Journal of Plasticity, 2015, 75: 63-99.


[4]Marciniak Z, Kuczyński K. Limit strains in the processes of stretch-forming sheet metal[J]. International Journal of Mechanical Sciences, 1967,9(9):609-620.


[5]Nakazima K, Kikuma T, Hasuka K. Study on the formability of steel sheets[J]. Yawata Technical Report, 1968,284:678-680.


[6]Ma B L, Wan M, Cai Z Y, et al. Investigation on the forming limits of 5754-O aluminum alloy sheet with the numerical Marciniak-Kuczynski approach[J]. International Journal of Mechanical Sciences, 2018,142-143:420-431.


[7]Barata da Rocha A, Santos A D, Teixeira P, et al. Analysis of plastic flow localization under strain paths changes and its coupling with finite element simulation in sheet metal forming[J]. Journal of Materials Processing Technology, 2009,209(11):5097-5109.


[8]Chung K, Lee C, Kim H. Forming limit criterion for ductile anisotropic sheets as a material property and its deformation path insensitivity, Part II: Boundary value problems[J]. International Journal of Plasticity, 2014,58:35-65.


[9]Swift H W. Plastic instability under plane stress[J]. Journal of the Mechanics and Physics of Solids, 1952,1:1-18.


[10]Hill R. On discontinuous plastic states with special reference to lacalized necking in thin sheets[J]. Journal of Mechanics and Physics Solids, 1952,1:19-30.


[11]Wang H B, Yan Y, Han F, et al. Experimental and theoretical investigations of the forming limit of 5754O aluminum alloy sheet under different combined loading paths[J]. International Journal of Mechanical Sciences, 2017,133:147-166.


[12]Basak S, Panda S K. Failure strains of anisotropic thin sheet metals: Experimental evaluation and theoretical prediction[J]. International Journal of Mechanical Sciences, 2019,151:356-374.


[13]马高山,万敏,吴向东.5A90铝锂合金热态下的成形极限图及其计算模型[J].中国有色金属学报,2008,(4)717-721.


Ma G S, Wan M, Wu X D. Forming limit diagram and calculating model for 5A90 Al-Li alloy sheet at elevated temperature[J]. The Chinese Journal of Nonferrous Metals, 2008,(4): 717-721.


[14]马高山,万敏,吴向东.基于M-K模型的铝锂合金热态下成形极限预测[J].中国有色金属学报,2008(6)980-984.


Ma G S, Wan M, Wu X D. Theoretical prediction of FLDs for Al-Li alloy at elevated temperature based on M-K model[J]. The Chinese Journal of Nonferrous Metals, 2008(6): 980-984.


[15]杜平梅,郎利辉,刘宝胜,等.基于M-K模型的成形极限预测及参数影响[J].塑性工程学报,201118(5)84-89.


Du P M, Lang L H, Liu B S, et al. Theoretical prediction and parameter influence of FLDs based on M-K model[J]. Journal of Plasticity Engineering, 2011, 18(5):84-89.


[16]Li X Q, Song N, Guo G Q, et al. Prediction of forming limit curve (FLC) for Al-Li alloy 2198-T3 sheet using different yield functions[J]. Chinese Journal of Aeronautics, 2013,26(5):1317-1323.


[17]杨希英,郎利辉,刘康宁,等.基于修正M-K模型的铝合金板材成形极限图预测[J].北京航空航天大学学报,201541(4)675-679.


Yang X Y, Lang L H, Liu K N, et al. Prediction of forming limit diagram of AA7075-O aluminum alloy sheet based on modified M-K model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(4):675-679.


[18]Nurcheshmeh M, Green D E. Prediction of forming limit curves for nonlinear loading paths using quadratic and non-quadratic yield criteria and variable imperfection factor[J]. Materials & Design, 2016,91:248-255.


[19]Jiao Z H, Lang L H, Zhao X N. 5A06 aluminum-magnesium alloy sheet warm hydroforming and optimization of process parameters[J]. Transactions of Nonferrous Metals Society of China, 2021,31(10):2939-2948.


[20]陈鹏.5A06铝合金凹底筒形件刚柔复合拉深温成形工艺研究[D].哈尔滨:哈尔滨理工大学,2022.


Chen P.Study on Forming Process of 5A06 Aluminum Alloy Concave-bottom Cylindrical Parts with Rigid-flexible Composite Deep Drawing Temperature[D].Harbin: Harbin University of Science and Technology, 2022.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9