[1]Gupta S K, Verma H, Yadav N. A review on recent development of nanofluid utilization in shell & tube heat exchanger for saving of energy[J]. Materials Today: Proceedings, 2022, 54: 579-589.
[2]Meng B, Wan M, Zhao R, et al. Micromanufacturing technologies of compact heat exchangers for hypersonic precooled airbreathing propulsion: A review [J]. Chinese Journal of Aeronautics, 2021, 34(2): 79-103.
[3]汤宇轩, 夏国栋, 宗露香, 等. 间断型波纹微通道内沸腾换热特性研究[J]. 工程热物理学报,2020, 41(12): 3008-3013.
Tang Y X, Xia G D, Zong L X, et al. Investigation of boiling heat transfer characteristics in intermittent wavy microchannels [J]. Journal of Engineering Thermophysics, 2020, 41(12): 3008-3013.
[4]吕志敏, 江豪. 5052铝合金薄型封板冲压缺陷仿真分析[J]. 锻压技术, 2022, 47(9): 99-104,181.
Lyu Z M, Jiang H. Simulation analysis on stamping defects for 5052 aluminum alloy thin sealing plate [J]. Forging & Stamping Technology, 2022, 47(9): 99-104,181.
[5]程传峰, 金明, 王项如, 等. 3003-H14 铝合金微通道扁管波形冲压的摩擦边界条件优化[J]. 材料科学与工艺, 2023, 31(1): 63-70.
Cheng C F, Jin M, Wang X R, et al. Optimization of friction boundary conditions for wave stamping of 3003-H14 aluminum alloy micro-channel flat tube [J]. Materials Science and Technology, 2023, 31(1): 63-70.
[6]Zhu Y X, Wan M M, Wang Y, et al. Size effect mechanism of cross-section deformation and section hollow coefficient-bending degree of the thin-walled composite bending tube [J].Materials & Design, 2021, 212: 110274.
[7]Liu C M, Liu Y L. Cross-sectional deformation behavior of double-ridged rectangular tube with fillers in different stages of H-typed bending [J]. Chinese Journal of Aeronautics, 2020, 33(6): 1799-1811.
[8]Wu X W, Mo C M, Li X X, et al. Experiment investigation on optimization of cylinder battery thermal management with microchannel flat tubes coupled with composite silica gel [J]. Journal of Energy Storage, 2022, 56: 105871.
[9]Farnam M, Khoshvaght-Aliabadi M, Asadollahzadeh M J. Intensified single-phase forced convective heat transfer with helical-twisted tube in coil heat exchangers [J]. Annals of Nuclear Energy, 2021, 154: 108108.
[10]雷旭升, 王挺, 梁建宏, 等. 极地科考小型无人飞行器[J]. 北京航空航天大学学报, 2009, 35(3): 267-271.
Lei X S, Wang T, Liang J H, et al. Small unmanned aerial vehicle for polar research [J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(3): 267-271.
[11]任恒, 房景仕, 张根烜. 微通道液冷冷板散热特性研究[J]. 雷达科学与技术, 2021, 19(3): 343-348.
Ren H, Fang J S, Zhang G X. Study on heat transfer characteristics of micro-channel cold-plates [J]. Radar Science and Technology, 2021, 19(3): 343-348.
[12]裘腾威, 刘敏, 刘源,等. 新型多孔铜微通道散热器研制[J]. 低温与超导, 2020, 48(8): 85-89.
Qiu T W, Liu M, Liu Y, et al. Development of a new type of porous copper microchannel heat sink [J]. Low Temperature and Superconductivity, 2020, 48 (8): 85-89.
[13]李贤睿. 微通道扁管热挤压成形过程及承压性能有限元仿真研究[D]. 上海:上海交通大学, 2017.
Li X R. Finite Element Simulation Study on Hot Extrusion Forming Process and Pressure-bearing Performance of Microchannel Flat Tube[D]. Shanghai:Shanghai Jiao Tong University, 2017.
[14]唐晟, 赵耀华, 刁彦华, 等. 多孔挤压铝扁管电子芯片热沉的热性能研究[J]. 山东科学, 2018, 31(3): 39-47.
Tang S, Zhao Y H, Diao Y H, et al. Thermal performance of a new kind of heat sink fabricated by flat aluminum multiport extruded tubes for electronic devices cooling [J]. Shandong Science, 2018, 31(3): 39-47.
[15]Yang X H, Tan S C, Ding Y J, et al. Flow and thermal modeling and optimization of micro/mini-channel heat sink [J]. Applied Thermal Engineering, 2017, 117: 289-296.
[16]Garcia J C S, Tanaka H, Giannetti N, et al. Multiobjective geometry optimization of microchannel heat exchanger using real-coded genetic algorithm [J]. Applied Thermal Engineering, 2022, 202: 117821.
[17]GB/T 33230—2016, 铝及铝合金多孔微通道扁管型材[S].
GB/T 33230—2016, Aluminum and aluminum alloy micro-multiport profiles[S].
|