[1]Chen D, Zhang R, Li Z L, et al. Temperature distribution prediction in control cooling process with recurrent neural network for variable-velocity hot rolling strips[J]. The International Journal of Advanced Manufacturing Technology, 2022, 120(11): 7533-7546.
[2]孙莉莉,李博.安钢集团热连轧层流冷却过程控制系统研究及优化[J].数字技术与应用,2015,(4):18.
Sun L L, Li B. Research and optimization of laminar cooling process control system for hot strip rolling in Anshan Iron & Steel Group [J]. Digital Technology & Application,2015,(4):18.
[3]郝智红.谱分解理论在热轧卷取温度控制系统改造中的应用[J].冶金自动化,2014,38(3):29-32.
Hao Z H. Application of spectral decomposition theory on retrofit of hot strip coiling temperature control system [J]. Metallurgical Industry Automation, 2014,38(3):29-32.
[4]Liu E Y, Zhang D H, Sun J, et al. Algorithm design and application of laminar cooling feedback control in hot strip mill [J]. Journal of Iron and Steel Research, International, 2012, 19(4): 39-42.
[5]周继平,田海,魏学松.短冷却线UFC工艺控制系统优化——基于轧后冷却技术[J].工业技术创新,2022,9(1):113-122.
Zhou J P, Tian H, Wei X S. Optimization on control system for short cooling line UFC process-Based on post-rolling cooling technology [J]. Industrial Technology Innovation,2022,9(1):113-122.
[6]Li S H, Li X, Yang Y P. Intelligent model building and GPC-PID based temperature curve control strategy for metallurgical industry[J]. Mathematical Problems in Engineering, 2016,(3): 7454805.1-7454805.16.
[7]Li B Q, Zhang S L, Wang J J, et al. Application of RBF-PID to MN-AGC in hot continuous rolling [A]. Proceeding of 2020 Chinese Control and Decision Conference (CCDC)[C]. Hefei: IEEE, 2020.
[8]Gou L F, Shao W X, Zeng X Y, et al. Rapid simulated annealing algorithm for optimization of aeroengine control based on BP neural network[A]. Proceeding of Chinese Control Conference (CCC) [C]. Guangzhou: IEEE, 2019.
[9]孙丽荣,王国栋,文雄,等.热轧带钢卷取温度前馈补偿的方法研究[J].重型机械,2022,(3):68-72.
Sun L R, Wang G D, Wen X, et al. Research on feedforward compensation method of system identification for coiling temperature of hot strip mills [J]. Heavy Machinery,2022,(3):68-72.
[10]张帅,王俊杰,李爱莲,等. 基于改进GWO-ELM的热轧带钢卷取温度预测[J]. 电子测量技术, 2021, 44(22): 50-55.
Zhang S, Wang J J, Li A L, et al. Improved GWO-ELM based hot rolled strip coiling temperature prediction[J]. Electronic Measurement Technology, 2021, 44(22):50-55.
[11]张坚,双远华,胡建华,等.基于改进的BP神经网络无缝钢管连轧轧制力的预测[J].锻压技术,2022,47(5):153-160.
Zhang J, Shuang Y H, Hu J H, et al. Prediction on rolling force in continuous rolling of seamless steel pipe based on improved BP neural network[J]. Forging & Stamping Technology,2022,47(5):153-160.
[12]朱其萍,徐红玉,王晓强,等.基于PSO-BP的超声滚挤压轴承套圈表面加工硬化程度预测[J].锻压技术,2021,46(11):190-196.
Zhu Q P, Xu H Y, Wang X Q, et al. Prediction on degree of work hardening for surface of bearing ring by ultrasonic rolling extrusion based on PSO-BP[J]. Forging & Stamping Technology, 2021,46(11):190-196.
[13]彭月,苏芷玄,杨杰,等.基于PSO-BP-PID单点混合悬浮球控制算法研究[J].铁道科学与工程学报,2022,19(6):1511-1520.
Peng Y, Su Z X, Yang J, et al. On hybrid single-point magnetic levitation ball control algorithm based on BP-PID[J]. Journal of Railway Science and Engineering,2022,19(6):1511-1520.
[14]Dong Y K, Zhang Y, Liu F B, et al. Research on an optimization method for injection-production parameters based on an improved particle swarm optimization algorithm[J]. Energies, 2022, 15(8): 1-18.
[15]Wang Y T, Liu J, Li R, et al. Application of PSO-BPNN-PID controller in nutrient solution EC precise control system: Applied research[J]. Sensors, 2022, 22(15): 58.
[16]魏学松,田海,周继平. 卷曲温度控制系统的研究与设计[J]. 自动化应用, 2021,(10): 4-9.
Wei X S, Tian H, Zhou J P. Research and design of curling temperature control system[J]. Automation Application, 2021,(10): 4-9.
|