[1]魏文波, 刁克军, 范新光,等. 我国铁路车辆轮轴发展综述[J]. 铁道车辆, 2022, 60 (3): 24-28.
Wei W B, Diao K J, Fan X G, et al. Overview of wheel-axle development of railway vehicle in China [J]. Rolling Stock, 2022, 60 (3): 24-28.
[2]朱德彪, 束学道. 工艺参数对楔横轧GH4169合金轴类件力能参数的影响[J]. 塑性工程学报, 2018, 25 (1): 52-59.
Zhu D B, Shu X D. Influence of process parameters on force and energy parameters of cross wedge rolling GH4169 alloy shaft parts [J]. Journal of Plasticity Engineering, 2018, 25 (1): 52-59.
[3]张钊玮, 曾健, 王锋华,等. 基于平面应变压缩的AZ80镁合金本构模型研究[J]. 塑性工程学报, 2020, 27 (10): 139-146.
Zhang Z W, Zeng J, Wang F H, et al. Study on constitutive model of AZ80 magnesium alloy based on plane strain compression [J]. Journal of Plasticity Engineering, 2020, 27 (10): 139-146.
[4]Lin J B, Wang Q D, Liu M P, et al. Finite element analysis of strain distribution in ZK60 Mg alloy during cyclic extrusion and compression [J]. Transactions of Nonferrous Metals Society of China, 2012, 22(8): 1902-1906.
[5]顾晨, 郑磊, 葛琛,等. TNT埋爆载荷下700 MPa高强韧钢变形行为及仿真分析[J]. 钢铁, 2022, 57 (9): 130-137.
Gu C, Zheng L, Ge C, et al. Deformation behavior and simulation of 700 MPa steel subjected to TNT buried explosion load [J]. Iron and Steel, 2022, 57 (9): 130-137.
[6]Prawoto Y, Fanone M, Shahedi S, et al. Computational approach using Johnson-Cook model on dual phase steel [J]. Computational Materials Science, 2012, 54: 48-55.
[7]Ranc N, Chrysochoos A. Calorimetric consequences of thermal softening in Johnson-Cook's model [J]. Mechanics of Materials, 2013, 65: 44-55.
[8]张春菊, 丁轩, 杨明球,等. DP980钢的动态力学性能及本构模型构建[J]. 钢铁, 2022, 57 (2): 157-161.
Zhang C J, Ding X, Yang M Q, et al. Dynamic mechanical properties and constitutive model of DP980 steel [J]. Iron and Steel, 2022, 57 (2): 157-161.
[9]Liang R Q, Khan A S. A critical review of experimental results and constitutive models for BCC and FCC metals over a wide range of strain rates and temperatures [J]. International Journal of Plasticity, 1999, 15(9): 963-980.
[10]Li Z X, Zhan M, Fan X G, et al. A modified Johnson-Cook model of as-quenched AA2219 considering negative to positive strain rate sensitivities over a wide temperature range [J]. Procedia Engineering, 2017, 207: 155-160.
[11]黄东英, 徐亮, 刘晓红. 冲击载荷下中碳低合金钢的动态力学性能与J-C本构模型的改进[J]. 锻压技术, 2021, 46 (11): 225-230.
Huang D Y, Xu L, Liu X H. Dynamic mechanical properties of medium carbon low alloy steel under and improvement of J-C constitutive model under impact load [J]. Forging & Stamping Technology, 2021, 46 (11): 225-230.
[12]Lin Y C, Chen X M, Liu G. A modified Johnson-Cook model for tensile behaviors of typical high-strength alloy steel [J]. Materials Science & Engineering A, 2010, 527(26): 6980-6986.
[13]Yuan Z, Li F, Qiao H, et al. A modified constitutive equation for elevated temperature flow behavior of Ti-6Al-4V alloy based on double multiple nonlinear regression [J]. Materials Science and Engineering A:Structural Materials:Properties,Microstructure and Processing, 2013, 578: 260-270.
[14]Shen M L, Huo Y M, He T, et al. Comparison of two constitutive modelling methods in application of TC16 alloy at the elevated deformation temperature [J]. Materials Today Communications, 2020, 24: 101053.
[15]郑晓华, 柏永青, 贾晓斌. 车轴用LZ50钢的热变形行为及高温塑性本构方程[J]. 金属热处理, 2020, 45 (10): 31-34.
Zheng X H, Bai Y Q, Jia X B. Hot deformation behavior and high temperature plastic constitutive equation of LZ50 steel for axle [J]. Heat Treatment of Metals, 2020, 45 (10): 31-34.
[16]李诗谦, 何涛, 杜向阳,等. 修正的 J-C 和 Z-A 模型对 LZ50 钢高温流变应力预测[J]. 钢铁, 2023,58(4):148-156.
Li S Q, He T, Du X Y, et al. Prediction of flow stress of LZ50 steel at high temperature by modified J-C and Z-A models [J]. Iron & Steel, 2023,58(4):148-156.
[17]Du S W, Chen S M, Song J J, et al. Hot deformation behavior and dynamic recrystallization of medium carbon LZ50 steel [J]. Metallurgical & Materials Transactions, 2017, 48(3): 1310-1320.
[18]林龙飞. 大型轴类零件柔性斜轧工艺及关键技术研究[D]. 北京:北京科技大学, 2022.
Lin L F. Research on the Key Technology of Flexible Skew Rolling Process for Large Shafts [D]. Beijing:University of Science and Technology Beijing, 2022.
|