网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
LZ50车轴钢高温拉伸变形本构模型研究
英文标题:Study on constitutive model for LZ50 axle steel under high temperature tensile deformation
作者:李汉林 何涛 霍元明 杜向阳 李诗谦 贾东昇 
单位:上海工程技术大学 机械与汽车工程学院 
关键词:LZ50车轴钢 高温拉伸 Johnson-Cook模型 DMNR模型 本构方程 
分类号:TG142
出版年,卷(期):页码:2023,48(12):224-232
摘要:

 为更好地描述LZ50车轴钢的高温拉伸变形行为,采用Gleeble-3800热模拟试验机在变形温度分别为90010001100 ℃,应变速率分别为0.11.010.0 s-1的条件下对LZ50车轴钢进行了高温拉伸试验,获得了不同变形条件下的应力、应变数据,并基于修正的Johnson-Cook(JC)本构模型和多元非线性回归的本构模型(DMNR)建立了两种LZ50车轴钢的高温拉伸本构模型。将建立的两种模型的预测值与试验数据进行对比,并采用相关系数R以及平均相对误差AARE对建立的两种模型的预测精度进行定量分析。结果表明:两种模型在不同变形温度下的预测能力存在差异;JC模型在900 ℃下的预测能力较好,R值和AARE值分别为0.9951.20%;在1000 ℃变形温度下, DMNR模型的预测能力较好,R值和AARE值分别为0.9976.38%;而在1100 ℃下两种模型的预测精度相差不大。

 In order to better describe the high-temperature tensile deformation behavior of LZ50 axle steel, high-temperature tensile tests of LZ50 axle steel were conducted by using Gleeble-3800 thermal simulation tester at the deformation temperatures of 900, 1000 and 1100 ℃ and the strain rates of 0.1, 1.0 and 10.0 s-1, respectively, and the stress-strain data were obtained under different deformation conditions. Then, based on the modified Johnson-Cook(JC) constitutive model and the multivariate nonlinear regression constitutive model(DMNR), two high-temperature tensile constitutive models for LZ50 axle steel were established. Furthermore, the predicted values of the two established models were compared with the experimental data, and the prediction accuracies of the two established models were quantitatively analyzed by using correlation coefficient R and average relative error AARE. The results show that the prediction abilities of the two models under different deformation temperatures are different, and JC model has better prediction ability at 900 ℃, with the R and AARE values of 0.995 and 1.20% respectively. However, DMNR model has better prediction ability at the deformation temperature of 1000 ℃, the R and AARE values are 0.997 and 6.38%, respectively, and the prediction accuracies of the two models at 1100 ℃ are similar.

基金项目:
国家重点研发项目(2018YFB1307900);国家自然科学基金资助项目(52275350);上海市自然基金项目资助项目(20ZR1422100)
作者简介:
作者简介:李汉林(2002-),男,硕士研究生 E-mail:915610463@qq.com 通信作者:何涛(1979-),男,博士,教授 E-mail:hetao@sues.edu.cn
参考文献:

 [1]魏文波, 刁克军, 范新光,等. 我国铁路车辆轮轴发展综述[J]. 铁道车辆, 2022, 60 (3): 24-28.


Wei W B, Diao K J, Fan X G, et al. Overview of wheel-axle development of railway vehicle in China [J]. Rolling Stock, 2022, 60 (3): 24-28.

[2]朱德彪, 束学道. 工艺参数对楔横轧GH4169合金轴类件力能参数的影响[J]. 塑性工程学报, 2018, 25 (1): 52-59.

Zhu D B, Shu X D. Influence of process parameters on force and energy parameters of cross wedge rolling GH4169 alloy shaft parts [J]. Journal of Plasticity Engineering, 2018, 25 (1): 52-59.

[3]张钊玮, 曾健, 王锋华,等. 基于平面应变压缩的AZ80镁合金本构模型研究[J]. 塑性工程学报, 2020, 27 (10): 139-146.

Zhang Z W, Zeng J, Wang F H, et al. Study on constitutive model of AZ80 magnesium alloy based on plane strain compression [J]. Journal of Plasticity Engineering, 2020, 27 (10): 139-146.

[4]Lin J B, Wang Q D, Liu M P, et al. Finite element analysis of strain distribution in ZK60 Mg alloy during cyclic extrusion and compression [J]. Transactions of Nonferrous Metals Society of China, 2012, 22(8): 1902-1906.

[5]顾晨, 郑磊, 葛琛,等. TNT埋爆载荷下700 MPa高强韧钢变形行为及仿真分析[J]. 钢铁, 2022, 57 (9): 130-137.

Gu C, Zheng L, Ge C, et al. Deformation behavior and simulation of 700 MPa steel subjected to TNT buried explosion load [J]. Iron and Steel, 2022, 57 (9): 130-137.

[6]Prawoto Y, Fanone M, Shahedi S, et al. Computational approach using Johnson-Cook model on dual phase steel [J]. Computational Materials Science, 2012, 54: 48-55.

[7]Ranc N, Chrysochoos A. Calorimetric consequences of thermal softening in Johnson-Cook's model [J]. Mechanics of Materials, 2013, 65: 44-55.

[8]张春菊, 丁轩, 杨明球,等. DP980钢的动态力学性能及本构模型构建[J]. 钢铁, 2022, 57 (2): 157-161.

Zhang C J, Ding X, Yang M Q, et al. Dynamic mechanical properties and constitutive model of DP980 steel [J]. Iron and Steel, 2022, 57 (2): 157-161.

[9]Liang R Q, Khan A S. A critical review of experimental results and constitutive models for BCC and FCC metals over a wide range of strain rates and temperatures [J]. International Journal of Plasticity, 1999, 15(9): 963-980.

[10]Li Z X, Zhan M, Fan X G, et al. A modified Johnson-Cook model of as-quenched AA2219 considering negative to positive strain rate sensitivities over a wide temperature range [J]. Procedia Engineering, 2017, 207: 155-160.

[11]黄东英, 徐亮, 刘晓红. 冲击载荷下中碳低合金钢的动态力学性能与J-C本构模型的改进[J]. 锻压技术, 2021, 46 (11): 225-230.

Huang D Y, Xu L, Liu X H. Dynamic mechanical properties of medium carbon low alloy steel under and improvement of J-C constitutive model under impact load [J]. Forging & Stamping Technology, 2021, 46 (11): 225-230.

[12]Lin Y C, Chen X M, Liu G. A modified Johnson-Cook model for tensile behaviors of typical high-strength alloy steel [J]. Materials Science & Engineering A, 2010, 527(26): 6980-6986.

[13]Yuan Z, Li F, Qiao H, et al. A modified constitutive equation for elevated temperature flow behavior of Ti-6Al-4V alloy based on double multiple nonlinear regression [J]. Materials Science and Engineering A:Structural Materials:Properties,Microstructure and Processing, 2013, 578: 260-270.

[14]Shen M L, Huo Y M, He T, et al. Comparison of two constitutive modelling methods in application of TC16 alloy at the elevated deformation temperature [J]. Materials Today Communications, 2020, 24: 101053.

[15]郑晓华, 柏永青, 贾晓斌. 车轴用LZ50钢的热变形行为及高温塑性本构方程[J]. 金属热处理, 2020, 45 (10): 31-34.

Zheng X H, Bai Y Q, Jia X B. Hot deformation behavior and high temperature plastic constitutive equation of LZ50 steel for axle [J]. Heat Treatment of Metals, 2020, 45 (10): 31-34.

[16]李诗谦, 何涛, 杜向阳,等. 修正的 J-C 和 Z-A 模型对 LZ50 钢高温流变应力预测[J]. 钢铁, 2023,58(4):148-156.

Li S Q, He T, Du X Y, et al. Prediction of flow stress of LZ50 steel at high temperature by modified J-C and Z-A models [J]. Iron & Steel, 2023,58(4):148-156.

[17]Du S W, Chen S M, Song J J, et al. Hot deformation behavior and dynamic recrystallization of medium carbon LZ50 steel [J]. Metallurgical & Materials Transactions, 2017, 48(3): 1310-1320.

[18]林龙飞. 大型轴类零件柔性斜轧工艺及关键技术研究[D]. 北京:北京科技大学, 2022.

Lin L F. Research on the Key Technology of Flexible Skew Rolling Process for Large Shafts [D]. Beijing:University of Science and Technology Beijing, 2022.

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9