网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于DEFORM-3D的高压油轨热锻工艺数值模拟及晶粒度预测
英文标题:Numerical simulation and grain size prediction on hot forging process of high-pressure oil rail based on DEFORM-3D
作者:吴思远1 2   莹1 2 邵恒睿1 2 边润雨1 2 庄晓伟3   伟3 章建军3 钱陈豪1 2 
单位:1.江南大学 机械工程学院 2.江苏省食品先进制造装备技术重点实验室 3.江苏龙城精锻集团有限公司 
关键词:高压油轨 热锻 晶粒度 成形载荷 应力 应变 
分类号:TG316;TG115.21
出版年,卷(期):页码:2024,49(1):38-46
摘要:

 基于DEFORM-3D软件对高压油轨的热锻工艺进行了数值模拟,通过对成形载荷曲线、温度场、等效应力场、等效应变场的分析,预测了热锻过程中锻件的晶粒度,并制定了高压油轨的热锻工艺参数。结果表明:在加热坯料至1150 ℃后预锻,机械式压床压机速率为每秒0.5周期的下压条件下,型腔充填饱满、锻件晶粒度均匀。通过实际热锻实验、金相实验以及Image-Pro Plus软件,验证了模拟中对于锻件晶粒度预测的准确性,锻后锻件主体的晶粒度为7~8级,晶粒致密、均匀,锻后通过固溶处理,提高了零件强度,改善了塑性和韧性。证实了在该工艺方案下能够得到充型良好、组织均匀的锻件,对高压油轨的实际热锻生产有着指导意义。

 Based on software DEFORM-3D, the numerical simulation of hot forging process for high-pressure oil rail was conducted. Then, by analyzing the forming load curves, temperature field, equivalent stress field and equivalent strain field, the grain size of forgings during the hot forging process was predicted, and the hot forging process parameters for high-pressure oil rail were formulated. The results show that under the pressing conditions of pre-forging after heating the billet to 1150 ℃ and pressing rate of mechanical press of 0.5 cycles per second, the mold cavity is fully filled and the grain size of forgings is uniform. Through actual hot forging experiments metallographic experiments and Image-Pro Plus software, the accuracy of grain size prediction for forgings in the simulation is verified. After forging, the main grain size of forgings is grade 7 to 8, and the grains are dense and uniform. Through solid solution treatment, the strength of part is increased, and the plasticity and toughness are improved. It is confirmed that under this process plan, the forgings with good mold filling and uniform organization can be obtained, which has guiding significance for the actual hot forging production of high-pressure oil rails.

基金项目:
国家自然科学基金资助项目(51905215);山东省重点研发计划项目(2019JZZY020111)
作者简介:
作者简介:吴思远(1999-),男,硕士研究生 E-mail:1326453598@qq.com 通信作者:钱陈豪(1987-),男,博士,副教授 E-mail:qianch@jiangnan.edu.cn
参考文献:

 [1]  廖喜平. 304不锈钢热变形行为研究及其在复杂锻件中的应用[D].上海:上海交通大学,2018. 


 

Liao X P. Study on the Hot Deformation Behavior of 304 Stainless Steel and the Application in Complicated Forging Part [D]. Shanghai: Shanghai Jiao Tong University,2018.

 

[2]  景飞,赵升吨,赵仁峰,等.金属厚壁管的旋转疲劳弯曲精密下料的研究[J].锻压装备与制造技术,2015,50(3):110-113,126.

 

Jing F,Zhao S D,Zhao R F,et al. Study on rotary fatigue bend precision blanking of thick-wall metal tube [J]. China Metalforming Equipment & Manufacturing Technology,2015,50(3): 110-113,126.

 

[3]  Lee W S,Lin C F,Chen T H,et al. High temperature microstructural evolution of 304L stainless steel as function of pre-strain and strain rate [J]. Materials Science and Engineering: A,2010,527(13-14): 3127-3137.

 

[4]  张传滨. 304L不锈钢热变形过程微观组织演变机制的研究[D].太原:太原科技大学,2011. 

 

Zhang C B. Study on the Microstructure Evolution Mechanism of 304L Stainless Steel during Hot Deformation Process [D]. Taiyuan: Taiyuan University of Science and Technology,2011.

 

[5]  Wang Z Q,Palmer T A,Beese A M. Effect of processing parameters on microstructure and tensile properties of austenitic stainless steel 304L made by directed energy deposition additive manufacturing[J]. Acta Materialia,2016,110: 226-235.

 

[6]  刘大海,陈劲东,柴浩瑞,等.基于DEFORM-3D的GH5188卡箍热模锻造过程数值模拟[J].锻压技术,2022,47(6):9-16. 

 

Liu D H,Chen J D,Chai H R,et al. Numerical simulation of hot die forging process for GH5188 clamp based on DEFORM-3D[J]. Forging & Stamping Technology,2022,47(6): 9-16.

 

[7]  王笑驰,左鹏鹏,吴晓春.SDP1塑料模具钢锻造过程组织演变的数值模拟[J].锻压技术,2023,48(2):16-28.

 

Wang X C,Zuo P P,Wu X C. Numerical simulation of microstructure evolution for SDP1 plastic die steel during forging process[J]. Forging & Stamping Technology,2023,48(2): 16-28.      

 

[8]  杨雨童,程晓农,罗锐,等.304和304L奥氏体不锈钢的热加工性能研究[J].塑性工程学报,2019,26(1): 156-161.

 

Yang Y T,Cheng X N,Luo R,et al.Research on hot workability of 304 and 304L austenitic stainless steel[J]. Journal of Plasticity Engineering,2019,26(1): 156-161.

 

[9]  车路长,蒋平,刘俊,等.Ti-6Al-4V钛合金筋板类吊挂锻造成形工艺优化及模具磨损研究[J].精密成形工程,2022,14(7):106-115. 

 

Che L C,Jiang P,Liu J,et al.Optimization of Ti-6Al-4V titanium alloy ribbed plate type hanging forging forming process and die wear [J]. Journal of Netshape Forming Engineering,2022,14(7): 106-115.

 

[10]王以华,吕景林,姜剑敏,等.锻模设计技术及实例[M].北京:机械工业出版社,2009.

 

Wang Y H,Lyu J L,Jiang J M,et al. Design Technology and Examples of Forging Die [M]. Beijing: China Machine Press,2009.

 

[11]郑赣. 发动机曲轴热锻数值模拟及工艺优化[D].上海:上海工程技术大学,2020.

 

Zheng G. The Numerical Simulation and Process Optimization of Engine Crankshaft Hot Forging [D]. Shanghai:Shanghai University of Engineering Science,2020.

 

[12]齐羿. 汽车盘式转向节锻造工艺及成形过程数值模拟研究[D].济南:山东大学,2021. 

 

Qi Y. Research on Forging Process and Numerical Simulation of Forming Process of Automotive Disc Steering Knuckle [D]. Jinan: Shandong University,2021.

 

[13]Xu W J,Li W H,Wang Y S. Experimental and theoretical analysis of wear mechanism in hot-forging die and optimal design of die geometry[J]. Wear,2014,318(1-2): 78-88.

 

[14]王自敏,杨志强,胡芳忠,等. Nb微合金化对18CrNiMo7-6钢奥氏体晶粒长大的影响[J]. 金属热处理,2021,46(9):53-57. 

 

Wang Z M,Yang Z Q,Hu F Z,et al. Effect of Nb microalloying on austenite grain growth of 18CrNiMo7-6 steel [J]. Heat Treatment of Metals,2021,46(9): 53-57.

 

[15]Ghaderi S,Karimzadeh F,Ashrafi A. Evaluation of microstructure and mechanical properties of transient liquid phase bonding of Inconel 718 and nano/ultrafine-grained 304L stainless steel[J]. Acta Materialia,2020,49: 162-174.

 

[16]周慧,李锡栋.固溶处理对304不锈钢显微组织及力学性能的影响[J].热加工工艺,2018,47(24):234-235.

 

Zhou H,Li X D. Effects of solid solution treatment on microstructure and mechanical properties of 304 stainless steel [J]. Hot Working Technology,2018,47(24): 234-235.

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9