[1] 廖喜平. 304不锈钢热变形行为研究及其在复杂锻件中的应用[D].上海:上海交通大学,2018.
Liao X P. Study on the Hot Deformation Behavior of 304 Stainless Steel and the Application in Complicated Forging Part [D]. Shanghai: Shanghai Jiao Tong University,2018.
[2] 景飞,赵升吨,赵仁峰,等.金属厚壁管的旋转疲劳弯曲精密下料的研究[J].锻压装备与制造技术,2015,50(3):110-113,126.
Jing F,Zhao S D,Zhao R F,et al. Study on rotary fatigue bend precision blanking of thick-wall metal tube [J]. China Metalforming Equipment & Manufacturing Technology,2015,50(3): 110-113,126.
[3] Lee W S,Lin C F,Chen T H,et al. High temperature microstructural evolution of 304L stainless steel as function of pre-strain and strain rate [J]. Materials Science and Engineering: A,2010,527(13-14): 3127-3137.
[4] 张传滨. 304L不锈钢热变形过程微观组织演变机制的研究[D].太原:太原科技大学,2011.
Zhang C B. Study on the Microstructure Evolution Mechanism of 304L Stainless Steel during Hot Deformation Process [D]. Taiyuan: Taiyuan University of Science and Technology,2011.
[5] Wang Z Q,Palmer T A,Beese A M. Effect of processing parameters on microstructure and tensile properties of austenitic stainless steel 304L made by directed energy deposition additive manufacturing[J]. Acta Materialia,2016,110: 226-235.
[6] 刘大海,陈劲东,柴浩瑞,等.基于DEFORM-3D的GH5188卡箍热模锻造过程数值模拟[J].锻压技术,2022,47(6):9-16.
Liu D H,Chen J D,Chai H R,et al. Numerical simulation of hot die forging process for GH5188 clamp based on DEFORM-3D[J]. Forging & Stamping Technology,2022,47(6): 9-16.
[7] 王笑驰,左鹏鹏,吴晓春.SDP1塑料模具钢锻造过程组织演变的数值模拟[J].锻压技术,2023,48(2):16-28.
Wang X C,Zuo P P,Wu X C. Numerical simulation of microstructure evolution for SDP1 plastic die steel during forging process[J]. Forging & Stamping Technology,2023,48(2): 16-28.
[8] 杨雨童,程晓农,罗锐,等.304和304L奥氏体不锈钢的热加工性能研究[J].塑性工程学报,2019,26(1): 156-161.
Yang Y T,Cheng X N,Luo R,et al.Research on hot workability of 304 and 304L austenitic stainless steel[J]. Journal of Plasticity Engineering,2019,26(1): 156-161.
[9] 车路长,蒋平,刘俊,等.Ti-6Al-4V钛合金筋板类吊挂锻造成形工艺优化及模具磨损研究[J].精密成形工程,2022,14(7):106-115.
Che L C,Jiang P,Liu J,et al.Optimization of Ti-6Al-4V titanium alloy ribbed plate type hanging forging forming process and die wear [J]. Journal of Netshape Forming Engineering,2022,14(7): 106-115.
[10]王以华,吕景林,姜剑敏,等.锻模设计技术及实例[M].北京:机械工业出版社,2009.
Wang Y H,Lyu J L,Jiang J M,et al. Design Technology and Examples of Forging Die [M]. Beijing: China Machine Press,2009.
[11]郑赣. 发动机曲轴热锻数值模拟及工艺优化[D].上海:上海工程技术大学,2020.
Zheng G. The Numerical Simulation and Process Optimization of Engine Crankshaft Hot Forging [D]. Shanghai:Shanghai University of Engineering Science,2020.
[12]齐羿. 汽车盘式转向节锻造工艺及成形过程数值模拟研究[D].济南:山东大学,2021.
Qi Y. Research on Forging Process and Numerical Simulation of Forming Process of Automotive Disc Steering Knuckle [D]. Jinan: Shandong University,2021.
[13]Xu W J,Li W H,Wang Y S. Experimental and theoretical analysis of wear mechanism in hot-forging die and optimal design of die geometry[J]. Wear,2014,318(1-2): 78-88.
[14]王自敏,杨志强,胡芳忠,等. Nb微合金化对18CrNiMo7-6钢奥氏体晶粒长大的影响[J]. 金属热处理,2021,46(9):53-57.
Wang Z M,Yang Z Q,Hu F Z,et al. Effect of Nb microalloying on austenite grain growth of 18CrNiMo7-6 steel [J]. Heat Treatment of Metals,2021,46(9): 53-57.
[15]Ghaderi S,Karimzadeh F,Ashrafi A. Evaluation of microstructure and mechanical properties of transient liquid phase bonding of Inconel 718 and nano/ultrafine-grained 304L stainless steel[J]. Acta Materialia,2020,49: 162-174.
[16]周慧,李锡栋.固溶处理对304不锈钢显微组织及力学性能的影响[J].热加工工艺,2018,47(24):234-235.
Zhou H,Li X D. Effects of solid solution treatment on microstructure and mechanical properties of 304 stainless steel [J]. Hot Working Technology,2018,47(24): 234-235.
|