[1] 武卫民,孙晨宇. 挤锻复合成形汽车高强镁合金的组织与性能[J]. 锻压技术,2022,47(12):27-30.
Wu W M, Sun C Y. Organization and properties of extrusion-forging composite formed automotive high-strength magnesium alloy[J]. Forging & Stamping Technology, 2022, 47(12): 27-30.
[2] 胡美些,狄石磊. 坯料预热方式对AZ80镁合金轮毂组织和性能的影响[J]. 锻压技术,2022,47(9):39-44.
Hu M X, Di S L. Effect of billet preheating mode on the organization and properties of AZ80 magnesium alloy wheels[J]. Forging & Stamping Technology, 2022, 47(9): 39-44.
[3] 李庆芬,邓彬,吴远志,等. 轧制应变量对AZ31镁合金组织与腐蚀性能的影响[J]. 锻压技术,2022,47(8):152-157.
Li Q F, Deng B, Wu Y Z, et al. Effect of rolling strain on the organization and corrosion properties of AZ31 magnesium alloy[J]. Forging & Stamping Technology, 2022, 47(8): 152-157.
[4] 卢立伟,康伟,黎小辉,等. 时效处理对Mg-Zn-Gd-Er稀土镁合金的组织和力学性能的影响[J]. 稀有金属,2022,46(9):1153-1162.
Lu L W, Kang W, Li X H, et al. Microstructure and mechanical properties of Mg-Zn-Gd-Er rare earth magnesium alloy via aging treatment[J]. Chinese Journal of Rare Metals, 2022, 46(9): 1153-1162.
[5] Che B, Lu L W, Zhang J L, et al. Effects of cryogenic treatment on microstructure and mechanical properties of AZ31 magnesium alloy rolled at different paths[J]. Materials Science and Engineering A, 2022, 832: 142475.
[6] Liu J W, Li G F, Chen D, et al. Effect of cryogenic treatment on deformation behavior of as-cast AZ91 Mg alloy[J]. Chinese Journal of Aeronautics, 2012, 25(6): 931-936.
[7] Jiang Y, Chen D, Chen Z H, et al. Effect of cryogenic treatment on the microstructure and mechanical properties of AZ31 magnesium alloy[J]. Materials and Manufacturing Processes, 2010, 25(8): 837-841.
[8] Mónica P, Bravo P M, Cárdenas D. Deep cryogenic treatment of HPDC AZ91 magnesium alloys prior to aging and its influence on alloy microstructure and mechanical properties[J]. Journal of Materials Processing Tech., 2017, 239: 297-302.
[9] Gong X Y, Wu Z S, Zhao F, et al. Effect of deep cryogenic treatment on the microstructure and the corrosion resistance of AZ61 magnesium alloy welded joint[J]. Metals, 2017, 7(5): 179.
[10]Asl K M, Tari A, Khomamizadeh F. Effect of deep cryogenic treatment on microstructure, creep and wear behaviors of AZ91 magnesium alloy[J]. Materials Science and Engineering A, 2009, 523(1): 27-31.
[11]Amini K, Akhbarizadeh A, Javadpour S. Investigating the effect of quench environment and deep cryogenic treatment on the wear behavior of AZ91[J]. Materials and Design, 2014, 54: 154-160.
[12]Pu Z, Song G L, Yang S, et al. Grain refined and basal textured surface produced by burnishing for improved corrosion performance of AZ31B Mg alloy[J]. Corrosion Science, 2012, 57: 192-201.
[13]张丁非,戴庆伟,胡耀波,等. 镁合金板材轧制成型的研究进展[J]. 材料工程, 2009,(10): 85-90.
Zhang D F, Dai Q W, Hu Y B, et al. Advances in rolling and forming of magnesium alloy plates[J]. Materials Engineering, 2009, (10): 85-90.
[14]Lu L W, Liu C, Zhao J, et al. Modification of grain refinement and texture in AZ31 Mg alloy by a new plastic deformation method[J]. Journal of Alloys and Compounds, 2015, 628: 130-134.
[15]许芳艳. 轧制板材镁合金AZ31的再结晶行为[D]. 长沙:湖南大学, 2006.
Xu F Y. Recrystallization Behavior of Rolled Sheet Magnesium Alloy AZ31[D]. Changsha: Hunan University, 2006.
[16]Fatemi-Varzaneh S M, Zarei-Hanzaki A, Cabrera J M. Shear banding phenomenon during severe plastic deformation of an AZ31 magnesium alloy[J]. Journal of Alloys and Compounds, 2011, 509(9): 3806-3810.
[17]Ion S E, Humphreys F J, White S H. Dynamic recrystallization and the development of microstructure during the high temperature deformation of magnesium[J]. Acta Metallurgica, 1982, 30(10): 1909-1919.
[18]Guo F, Zhang D F, Yang X S, et al. Evolution of microstructure and weave of AZ31 magnesium alloy during large strain hot rolling [J]. Transactions of Nonferrous Metals Society of China, 2015, 25(1): 14-21.
[19]毛萍莉, 刘超, 刘正, 等. AZ31镁合金中绝热剪切带的组织演变规律[J]. 稀有金属材料与工程, 2015, 44(5): 1181-1184.
Mao P L, Liu C, Liu Z, et al. Organizational evolution of the adiabatic shear zone in AZ31 magnesium alloy[J]. Rare Metal Materials and Engineering, 2015, 44(5): 1181-1184.
[20]张宇. 轧制AZ31镁合金剪切带形成机理的研究[D]. 沈阳:东北大学, 2013.
Zhang Y. Study on the Formation Mechanism of Shear Zone of Rolled AZ31 Magnesium Alloy[D]. Shenyang: Northeastern University, 2013.
[21]陈鼎, 夏树人, 姜勇, 等. 镁合金深冷处理研究[J]. 湖南大学学报:自然科学版, 2008, 35(1): 62-65.
Chen D, Xia S R, Jiang Y, et al. Study on deep cooling treatment of magnesium alloy[J]. Journal of Hunan University: Natural Science Edition, 2008, 35(1): 62-65.
[22]Nave M D, Barnett M R. Microstructures and textures of pure magnesium deformed in plane-strain compression[J]. Scripta Materialia, 2004, 51(9): 881-885.
[23]郭超凡. 深冷处理对AZ31镁合金组织及性能的影响研究[D]. 长春:吉林大学, 2019.
Guo C F. Study on the Effect of Deep Cooling Treatment on the Organization and Properties of AZ31 Magnesium Alloy[D]. Changchun: Jilin University, 2019.
[24]Fan Y T, Lu L W, Zhou T. et al. Improvement of the microstructure and microhardness of AQ80 magnesium alloy by repeated upsetting-extrusion[J]. Metals and Materials International, 2023, 29(10):3052-3065.
[25]Sadr M H, Jafarzadeh H. Characterization of AZ91 magnesium alloy processed by cyclic contraction/expansion extrusion using the experimental and micromechanical cellular automaton finite element approach[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2020, 234(11): 1417-1430.
[26]Kang W, Lu L W, Feng L B, et al. Effects of pre-aging on microstructure evolution and deformation mechanisms of hot extruded Mg-6Zn-1Gd-1Er Mg alloys[J]. Journal of Magnesium and Alloys, 2023, 11(1): 317-328.
|