网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于辊耗控制的热连轧工艺润滑制度优化及其应用验证
英文标题:Process lubrication system optimization and application validation on hot tandem rolling based on roller consumption control
作者:姚非非1   峥2 王飞飞1   明3 
单位:1. 新乡职业技术学院 智能制造学院 2. 开封技师学院 汽车工程系 3. 河南理工大学 机械工程学院 
关键词:热连轧 辊耗 工艺润滑 辊间压力 板形值 热滑伤指数 打滑因子 
分类号:TH162
出版年,卷(期):页码:2024,49(1):223-227
摘要:

 为了获得最优带材出口板形,在构建对辊耗程度判断指标的基础上,建立了工艺润滑制度优化模型。为验证优化方法的实际应用性能,对2160 mm热连轧机组进行了辊耗控制试验研究,深入分析了工艺润滑下辊间压力横向分布,综合运用试验轧机与理论分析,构建得到了以辊耗控制为目标的工艺润滑技术,实现了优化工艺润滑制度的效果。研究结果表明:用于评价辊耗状态的目标函数由0.415减小为0.068,板形值由最初的13.32减小至10.46,带材轧制的热滑伤指数减小了14.6%,打滑因子减小了13.2%,辊耗减小了17.4%。采用提出的优化方法对热连轧机组生产过程进行了控制测试,获得了峰值更小的辊间压力分布,实现了对轧辊辊耗的有效控制,避免了机组打滑现象,实现了经济效益的显著提升。

 In order to obtain the optimal strip outlet shape, the optimization model of process lubrication system was established on the basis of the index of determining the degree of roller consumption, and the roller consumption control experiment was conducted on the 2160 mm hot tandem mill in order to verify the practical application performance of the optimization method. Then, the transverse distribution of the pressure between rollers under process lubrication was deeply analyzed, and by comprehensive application of the test mill and theoretical analysis, the process lubrication technology with roller consumption control as the objective was established to achieve the effect of optimizing the process lubrication system. The results show that the objective function for evaluating the state of roller consumption decreases from 0.415 to 0.068, the shape value decreases from 13.32 to 10.46, the thermal slip index decreases by 14.6%, the slip factor decreases by 13.2%, and the roller consumption decreases by 17.4%. The optimization method proposed is used to control and test the production process of the hot tandem rolling mill, and the pressure distribution between rollers with a smaller peak value is obtained, which can effectively control the roller consumption of roller, avoid the slipping phenomenon of the unit, and realize the significant improvement of economic benefits.

基金项目:
国家自然科学基金资助项目(51905496)
作者简介:
作者简介:姚非非(1985-),女,硕士,讲师 E-mail:wangfeifei6056092@126.com
参考文献:

 [1]  曹建国, 陈先霖, 何安瑞. 宽带钢热轧机轧辊剥落及其解决方案[J]. 冶金设备, 1998,(4): 7-9,20.


Cao J G, Chen X L, He A R. Rolling spalling and its solution for wide strip hot rolling mill [J]. Metallurgical Equipment, 1998, (4): 7-9, 20.

[2]  窦鹏, 李友国, 梁开明, 等. CVC热轧机支承辊接触应力有限元分析[J]. 清华大学学报:自然科学版, 2005, (12): 1668-1671.

Dou P, Li Y G, Liang K M, et al. Finite element analysis of support roll contact stress in CVC hot rolling mill [J]. Journal of Tsinghua University: Natural Science Edition, 2005, (12): 1668-1671.

[3]  李洪波, 曹建国, 张杰, 等. CVC轧机支持辊力学有限元分析及新辊形[J]. 塑性工程学报, 2010, 17(2):84-89.

Li H B, Cao J G, Zhang J, et al. Finite element analysis and new roll shape of CVC mill support roll mechanics [J]. Journal of Plasticity Engineering, 2010, 17(2):84-89.

[4]  曹建国, 王燕萍, 孔宁, 等. 不锈钢热连轧机粗轧支持辊剥落影响因素的有限元分析[J]. 工程力学, 2011, 28(4): 194-199.

Cao J G, Wang Y P, Kong N, et al. Finite element analysis of influencing factors of rough rolling support roll spalling in hot tandem stainless steel mill [J]. Engineering Mechanics, 2011, 28(4): 194-199.

[5]  贾俊彪, 严彪, 吴成军. 支撑辊倒角对热轧钢板板形的影响[J]. 上海金属, 2022, 44(1): 105-110.

Jia J B, Yan B, Wu C J. Influence of support roll chamfer on shape of hot rolled steel sheet [J]. Shanghai Metal, 2022, 44(1): 105-110.

[6]  曹建国, 魏钢城, 张杰, 等. 热轧辊形配置对无取向硅钢板形控制性能的影响[J]. 北京科技大学学报, 2007, (10): 1033-1036, 1050.  

Cao J G, Wei G C, Zhang J, et al. Effect of roll contour configuration on the flatness control performance of non-oriented electrical steel sheets in hot rolling [J]. Journal of University of Science and Technology Beijing, 2007, (10): 1033-1036, 1050.

[7]  孙建林, 马艳丽. 轧制过程工艺润滑技术的发展和应用[J]. 特殊钢, 2007, (3): 47-49.

Sun J L, Ma Y L. Development and application of lubrication technology for rolling process [J]. Special Steel, 2007, (3): 47-49.

[8]  孙卫华, 白彦, 项本朝, 等. 热连轧工艺润滑自动控制系统的开发与应用[J]. 轧钢, 2009, 26(5): 47-50.

Sun W H, Bai Y, Xiang B C, et al. Development and application of automatic control system for technology lubrication of hot strip mill [J]. Steel Rolling, 2009, 26(5): 47-50.

[9]  孙建林, 孟亚男. 纳米加工液对金属表面的润滑与修复[J]. 表面技术, 2019, 48(11): 1-14.

Sun J L, Meng Y N. Lubrication and repair of metal surface by nano-fluid [J]. Surface Technology, 2019, 48(11): 1-14.

[10]郭贺松, 姬会爽, 刘洋, 等. SCR3000连铸连轧铜杆生产线10#轧辊润滑工艺优化[J]. 塑性工程学报, 2020, 27(3): 163-170.  

Guo H S, Ji H S, Liu Y, et al. SCR3000 continuous casting and rolling copper rod production line 10# roll lubrication optimization [J]. Journal of Plasticity Engineering, 2020, 27(3): 163-170.

[11]程志彦, 崔熙颖, 刘云峰, 等. 冷连轧过程中以辊耗控制为目标的轧制规程优化技术[J]. 塑性工程学报, 2020, 27(12): 211-215.

Cheng Z Y, Cui X Y, Liu Y F, et al. Optimization technology of rolling schedule aiming at roll consumption control in cold continuous rolling process [J]. Journal of Plasticity Engineering, 2020, 27(12): 211-215.

[12]李硕, 李根, 张勃洋, 等. 冷轧工作辊表面微观形貌磨损行为研究[J]. 华中科技大学学报:自然科学版,2018,46(11): 41-46.

Li S, Li G, Zhang B Y, et al. Study on rolling-wear microtopograph of working roll surface during cold rolling[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2018, 46(11): 41-46.

[13]吴琼, 秦晓峰. 板形调控工艺对轧辊间接触及磨损的影响[J]. 太原理工大学学报,2020,51(2): 242-247.

Wu Q, Qin X F. Influence of shape control process on contact stress and wear of roll [J]. Journal of Taiyuan University of Technology, 2020, 51(2): 242-247.

[14]曹建国, 张杰, 甘健斌, 等. 无取向硅钢热轧工作辊磨损预报模型[J]. 北京科技大学学报, 2006, (3): 286-289.

Cao J G, Zhang J, Gan J B, et al. Work roll wear prediction model of non-oriented electrical steel sheets in hot strip mills [J]. Journal of University of Science and Technology Beijing, 2006, (3): 286-289.

[15]邵健, 何安瑞, 杨荃, 等. 兼顾热轧工艺润滑的工作辊磨损预报模型[J]. 中国机械工程, 2009, 20(3): 361-364.

Shao J, He A R, Yang Q, et al. Work roll wear prediction model taking in account lubrication in hot rolling[J]. China Mechanical Engineering, 2009, 20(3): 361-364.

[16]白振华, 陈浩, 高明磊, 等. 冷连轧机组划痕缺陷产生机制及治理措施[J]. 钢铁, 2014, 49(6): 59-64.

Bai Z H, Chen H, Gao M L, et al. Scratch defect mechanism and control measures in cold tandem mill [J]. Iron and Steel, 2014, 49(6): 59-64.
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9