网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
热挤压态Mg-10Gd-4Y-0.5Zr合金的时效析出
英文标题:
作者:张小翠 
单位:(新乡职业技术学院 智能制造学院 河南 新乡 453003) 
关键词:Mg-10Gd-4Y-0.5Zr合金 热挤压 β′相 β相 时效时间 
分类号:TG166.4
出版年,卷(期):页码:2024,49(2):241-246
摘要:

 为提高热挤压态Mg-10Gd-4Y-0.5Zr合金的力学性能,并获得该合金的最佳时效工艺参数,以热挤压态Mg-10Gd-4Y-0.5Zr合金为研究对象,探究了在200 ℃时效温度下不同时效时间对其硬度和析出相的影响规律。结果表明:在等温时效过程中,随着时效时间的延长,合金的硬度先降低再逐渐增大,在96 h时达到峰值后又逐渐下降;当时效6 h后,晶粒内残存大量位错线,晶粒内生成少量尺寸较小的β′相,此时为欠时效态;随着时效时间的延长,β′相沿着<101-0>α方向逐渐扩展长大,数量逐渐增多;当时效96 h后,β′相的密度达到最大,并逐渐连接,此时为峰值时效态;当时效120 h后,在晶界处生成尺寸大约为88 nm×237 nm的椭圆状β相,此时为过时效态。

 

  In order to improve the mechanical properties of hot extruded Mg-10Gd-4Y-0.5Zr alloy and obtain the optimal aging process parameters of the alloy, for the hot extruded Mg-10Gd-4Y-0.5Zr alloy, the influences of different aging time on its hardness and precipitated phase at the aging temperature of 200 ℃ were mainly studied. The results show that during the isothermal aging process, with the aging time increases, the hardness of alloy first decreases and then gradually increases, reaching a peak at 96 h, and then gradually decreasing. After aging for 6 h, many dislocation lines remain in the grains, and a small amount of smaller β′ phase is also generated in the grains, which is in an under-aging state. As the aging time increases, β′ phase gradually expands and grows along <101-0 >α direction, the number gradually increases, and after aging for 96 h, the density of β′ phase reaches the maximum and gradually connects, which is the peak aging state. After aging for 120 h, the elliptical β phase with a size of approximately 88 nm×237 nm is generated at the grain boundary, which is the over-aging state.

 
基金项目:
作者简介:
作者简介:张小翠(1984-),女,硕士,副教授
参考文献:

 
[1]李彩霞, 幸世文, 李超, 等. 锡添加量对铸态Mg-3Al-0.5SiO2合金显微组织和力学性能的影响
[J]. 机械工程材料, 2023,47(3): 72-77,84. 


 

Li C X, Xing S W, Li C, et al. Effect of Sn addition amount on microstructure and mechanical properties of ascast Mg-3Al-0.5SiO2 alloy
[J]. Materials for Mechanical Engineering, 2023,47(3): 72-77,84.

 


[2]You S, Huang Y, Kainer K U, et al. Recent research and developments on wrought magnesium alloys
[J]. Journal of Magnesium and Alloys, 2017,5: 239-253.

 


[3]刘奋军, 宁祥, 白艳霞, 等. AZ31镁合金表面激光熔覆AlTiC复合涂层微观组织与腐蚀性能
[J]. 复合材料学报, 2023,40(2): 959-969.

 

Liu F J, Ning X, Bai Y X, et al. Microstructure and corrosion properties of the laser cladding AlTiC composite coating on AZ31 magnesium alloy
[J]. Acta Materiae Compositae Sinica, 2023,40(2): 959-969.

 


[4]武卫民, 孙晨宇. 挤锻复合成形汽车高强镁合金的组织与性能
[J]. 锻压技术, 2022, 47(12): 27-30. 

Wu W M, Sun C Y. Microstructure and properties of automotive highstrength magnesium alloy by extrusionforging compound forming
[J]. Forging & Stamping Technology, 2022, 47(12): 27-30.

 


[5]Liu Y L, Li F,Xue W S, et al. Properties of rolled AZ31 magnesium alloy sheet fabricated by continuous variable crosssection direct extrusion
[J]. Journal of Materials Engineering and Performance, 2018, 27(3): 1-9.

 


[6]Yan Z M, Li X B, Zhang Z M, et al. Microstructure evolution, texture and mechanical properties of a MgGdY-ZnZr alloy fabricated by cyclic expansion extrusion with an asymmetrical extrusion cavity:The influence of passes and processing route
[J]. Journal of Magnesium and Alloys, 2021, 9: 964-982.

 


[7]Yan L P, Li Q A, Chen X Y. Microstructure evolution and dynamic precipitation behavior of Mg-10Gd-4Y-1Sm-0.5Zr alloy during backward hot extrusion
[J]. Metals and Materials International, 2021, 27(9): 3522-3528.

 


[8]李梦媛, 刘楚明, 张冬冬, 等. T5热处理对MgGdY-Zr合金筒形件拉压不对称性的影响
[J]. 锻压技术, 2022, 47(12): 193-199.

 

Li M Y, Liu C M, Zhang D D, et al. Influence of T5 heat treatment on tensioncompression asymmetry for MgGdY-ZrAg alloy cylindrical parts
[J]. Forging & Stamping Technology, 2022, 47(12): 193-199.

 


[9]He S M, Zeng X Q, Peng L M, et al. Precipitation in a Mg-10Gd-3Y-0.4Zr (wt.%) alloy during isothermal ageing at 250 ℃
[J]. Journal of Alloys and Compounds, 2006,421: 309-313.

 


[10]Zheng J X, Li Z, Tan L D, et al. Precipitation in MgGdY-Zr alloy: Atomicscale insights into structures and transformations
[J]. Materials Characterization, 2016, 117: 76-83.

 


[11]Hong M, Shah S S A, Wu D, et al. Ultrahigh strength Mg-9Gd-4Y-0.5Zr alloy with Bimodal structure processed by traditional extrusion
[J]. Metals and Materials International, 2016,22(6): 1091-1097.

 


[12]Liu H,Gao Y,Liu J Z,et al. A simulation study of the shape of β′ precipitates in MgY and MgGd alloys
[J]. Acta Materialia, 2013,61: 453-466.

 


[13]Liu H, Xu W F, Wilson N C, et al. Formation of and interaction between βF′ and β′ phases in a MgGd alloy
[J]. Journal of Alloys and Compounds, 2017,712: 334-344.

 


[14]Zhang X, Li L, Deng Y, et al. Superplasticity and microstructure in MgGdY-Zr alloy prepared by extrusion
[J]. Journal of Alloys and Compounds, 2009,481: 296-300.

 


[15]Sasaki T T, OhIshi K, Ohkubo T,et al. Enhanced age hardening response by the addition of Zn in MgSn alloys
[J]. Scripta Materiallia, 2006,55(3): 251-254.

 


[16]Honma T, Ohkubo T, Kamado S, et al. Effect of Zn additions on the agehardening of Mg-2.0Gd-1.2Y-0.2Zr alloys
[J]. Acta Materialia, 2007,55(12): 4137-4150.

 


[17]Peng M Q, Hou X L, Wang L D, et al. Microstructure and mechanical properties of high performance MgGd based alloys
[J]. Materials and Design, 2009,30: 292-296.

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9