[1]李彩霞, 幸世文, 李超, 等. 锡添加量对铸态Mg-3Al-0.5SiO2合金显微组织和力学性能的影响 [J]. 机械工程材料, 2023,47(3): 72-77,84.
Li C X, Xing S W, Li C, et al. Effect of Sn addition amount on microstructure and mechanical properties of ascast Mg-3Al-0.5SiO2 alloy [J]. Materials for Mechanical Engineering, 2023,47(3): 72-77,84.
[2]You S, Huang Y, Kainer K U, et al. Recent research and developments on wrought magnesium alloys [J]. Journal of Magnesium and Alloys, 2017,5: 239-253.
[3]刘奋军, 宁祥, 白艳霞, 等. AZ31镁合金表面激光熔覆AlTiC复合涂层微观组织与腐蚀性能 [J]. 复合材料学报, 2023,40(2): 959-969.
Liu F J, Ning X, Bai Y X, et al. Microstructure and corrosion properties of the laser cladding AlTiC composite coating on AZ31 magnesium alloy [J]. Acta Materiae Compositae Sinica, 2023,40(2): 959-969.
[4]武卫民, 孙晨宇. 挤锻复合成形汽车高强镁合金的组织与性能 [J]. 锻压技术, 2022, 47(12): 27-30.
Wu W M, Sun C Y. Microstructure and properties of automotive highstrength magnesium alloy by extrusionforging compound forming [J]. Forging & Stamping Technology, 2022, 47(12): 27-30.
[5]Liu Y L, Li F,Xue W S, et al. Properties of rolled AZ31 magnesium alloy sheet fabricated by continuous variable crosssection direct extrusion [J]. Journal of Materials Engineering and Performance, 2018, 27(3): 1-9.
[6]Yan Z M, Li X B, Zhang Z M, et al. Microstructure evolution, texture and mechanical properties of a MgGdY-ZnZr alloy fabricated by cyclic expansion extrusion with an asymmetrical extrusion cavity:The influence of passes and processing route [J]. Journal of Magnesium and Alloys, 2021, 9: 964-982.
[7]Yan L P, Li Q A, Chen X Y. Microstructure evolution and dynamic precipitation behavior of Mg-10Gd-4Y-1Sm-0.5Zr alloy during backward hot extrusion [J]. Metals and Materials International, 2021, 27(9): 3522-3528.
[8]李梦媛, 刘楚明, 张冬冬, 等. T5热处理对MgGdY-Zr合金筒形件拉压不对称性的影响 [J]. 锻压技术, 2022, 47(12): 193-199.
Li M Y, Liu C M, Zhang D D, et al. Influence of T5 heat treatment on tensioncompression asymmetry for MgGdY-ZrAg alloy cylindrical parts [J]. Forging & Stamping Technology, 2022, 47(12): 193-199.
[9]He S M, Zeng X Q, Peng L M, et al. Precipitation in a Mg-10Gd-3Y-0.4Zr (wt.%) alloy during isothermal ageing at 250 ℃ [J]. Journal of Alloys and Compounds, 2006,421: 309-313.
[10]Zheng J X, Li Z, Tan L D, et al. Precipitation in MgGdY-Zr alloy: Atomicscale insights into structures and transformations [J]. Materials Characterization, 2016, 117: 76-83.
[11]Hong M, Shah S S A, Wu D, et al. Ultrahigh strength Mg-9Gd-4Y-0.5Zr alloy with Bimodal structure processed by traditional extrusion [J]. Metals and Materials International, 2016,22(6): 1091-1097.
[12]Liu H,Gao Y,Liu J Z,et al. A simulation study of the shape of β′ precipitates in MgY and MgGd alloys [J]. Acta Materialia, 2013,61: 453-466.
[13]Liu H, Xu W F, Wilson N C, et al. Formation of and interaction between βF′ and β′ phases in a MgGd alloy [J]. Journal of Alloys and Compounds, 2017,712: 334-344.
[14]Zhang X, Li L, Deng Y, et al. Superplasticity and microstructure in MgGdY-Zr alloy prepared by extrusion [J]. Journal of Alloys and Compounds, 2009,481: 296-300.
[15]Sasaki T T, OhIshi K, Ohkubo T,et al. Enhanced age hardening response by the addition of Zn in MgSn alloys [J]. Scripta Materiallia, 2006,55(3): 251-254.
[16]Honma T, Ohkubo T, Kamado S, et al. Effect of Zn additions on the agehardening of Mg-2.0Gd-1.2Y-0.2Zr alloys [J]. Acta Materialia, 2007,55(12): 4137-4150.
[17]Peng M Q, Hou X L, Wang L D, et al. Microstructure and mechanical properties of high performance MgGd based alloys [J]. Materials and Design, 2009,30: 292-296.
|