[1]董红松,李辉.基于NSGA-Ⅱ的7050铝合金锻造力学性能多目标优化 [J].锻压技术,2023,48(8):41-47.
Dong H S, Li H. Multiobjective optimization on forging mechanical property for 7050 aluminum alloy based on NSGA-Ⅱ [J]. Forging & Stamping Technology, 2023, 48(8): 41-47.
[2]Quan G Z, Wang T, Li Y L, et al. Artificial neural network modeling to evaluate the dynamic flow stress of 7050 aluminum alloy [J]. Journal of Materials Engineering & Performance, 2016, 25(2):1-12.
[3]郝爱国,吉卫,郝花蕾.7050铝合金的热变形行为及热加工图研究 [J].热加工工艺,2018,47(17):141-144.
Hao A G, Ji W, Hao H L. Study on hot deformation behavior and hot processing map of 7050 aluminum alloy [J]. Hot Working Technology, 2018, 47(17):141-144.
[4]夏洪均,唐全波,王敬,等.7050铝合金修正本构模型及ZenerHollomon参数演化 [J].塑性工程学报,2022,29(6):149-156.
Xia H J, Tang Q B, Wang J, et al. Modified constitutive model and ZenerHollomon parameter evolution of 7050 aluminum alloy [J]. Journal of Plasticity Engineering, 2022, 29(6):149-156.
[5]王运,张昌明,张昱.航空Al7050合金的静动态力学特性研究及JC本构模型构建 [J].材料导报,2021,35(10):10096-10102.
Wang Y, Zhang C M, Zhang Y. Study on static and dynamic mechanical properties of aviation Al7050 alloy and construction of JC constitutive model [J]. Materials Reports,2021,35(10):10096-10102.
[6]杨成曦,王姝俨,吴道祥.锻态7050铝合金修正JC本构模型建立与模拟应用 [J].铝加工,2022,(4):47-51.
Yang C X, Wang S Y, Wu D X. Construction and simulation application of modified JohnsonCookconstitutive model for forged 7050 aluminum alloy [J]. Aluminium Fabrication, 2022,(4):47-51.
[7]苏燕,梁武.基于RBF神经网络的铸轧7050铝合金的力学性能预测 [J].热加工工艺,2018,47(21):145-147,151.
Su Y, Liang W. Prediction of mechanical properties of casting rolling 7050 aluminum alloy based on RBF neural network [J]. Hot Working Technology, 2018, 47(21):145-147,151.
[8]马斌,梁强,贾艳艳,等.基于BPNN、SVR和RF模型的7050合金高温流动应力预测 [J].材料热处理学报,2023,44(3):196-204.
Ma B, Liang Q, Jia Y Y, et al. Prediction of high temperature flow stress of 7050 aluminum alloy based on BPNN, SVR and RF models [J]. Transactions of Materials and Heat Treatment, 2023, 44(3):196-204.
[9]张含茹. 7050铝合金热态流变行为及其微观组织演变研究 [D]. 济南:山东大学, 2022.
Zhang H R. Study on Thermal Rheological Behavior and Microstructure Evolution of 7050 Aluminum Alloy [D]. Jinan:Shandong University, 2022.
[10]Liu S H, Pan Q L, Li H, et al. Characterization of hot deformation behavior and constitutive modeling of AlMgSiMnCr alloy [J].Journal of Materials Science, 2019, 54:4366-4383.
[11]Rudra A, Das S, Dasgupta R. Constitutive modeling for hot deformation behavior of Al-5083+SiC composite [J]. Journal of Materials Engineering and Performance, 2019, 28: 87-99.
[12]陈学文, 杨喜晴, 王纳纳. GCr15SiMn钢的温变形行为及HanselSpittel流变应力模型 [J]. 金属热处理, 2018, 43(5):34-38.
Chen X W, Yang X Q, Wang N N. Warm deformation behavior and HanselSpittel of constitutive model of GCr15SiMn steel [J]. Heat Treatment of Metals, 2018, 43(5):34-38.
[13]Richardson G J, Sellars C M, Tegart W. Recrystallization during creep of nickel [J]. Acta Metallurgica, 1966, 14(10):1225-1236.
[14]Zhang J S, Xiao G Q,Deng G Y, The quadratic constitutive model based on partial derivative and taylor series of Ti6242s alloy and predictability analysis [J].Materials,2023,16(7):2928.
[15]Prasad Y V R K, Gegel H L, Doraivelu S M, et al. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242 [J]. Metallurgical Transactions A, 1984, 15(10):1883-1892.
[16]赵天生. 7050铝合金T形截面高筋薄壁锻件成形工艺优化及多级时效研究 [D].重庆:重庆大学,2017.
Zhao T S. Study on Optimization of Forming Process and Multi Stage Aging for 7050 Alloy Tshape Section with High Reinforcement and Thin Wall Forgings [D]. Chongqing:Chongqing University, 2017.
|