? [1]崔泗鹏,姚卫星,夏天翔.连接件振动疲劳寿命分析的名义应力法 [J].中国机械工程,2014,25(18):2519-2522.
Cui S P,Yao W X,Xia T X.Nominal stress approach for fatigue life prediction of multifastener joints under vibration loading [J].China Mechanical Engineering,2014,25(18):2519-2522.
[2]陈秉智,何正平,李向伟,等.某构件焊缝疲劳开裂的寿命预测方法应用对比 [J].焊接学报,2022,43(5):63-68,117.
Chen B Z, He Z P, Li X W, et al. Comparison of fatigue life predicting methods used in cracked welded component [J]. Transactions of the China Welding Institution, 2022, 43(5): 63-68,117.
[3]Shen W, Qiu Y, Yan R J, et al. A simplified method for evaluating singular stress field and fatigue strength of Ushaped notch [J]. Marine Structures, 2020,72:102770.
[4]赵荣国,刘亚风,蒋永洲,等.航空发动机涡轮盘用GH4133B合金疲劳裂纹扩展寿命概率预测 [J].机械工程学报,2015,51(18):71-82.
Zhao R G, Liu Y F, Jiang Y Z, et al. Probabilistic fatigue crack propagation life prediction of GH4133B superalloy used in turbine disk of aeroengine [J]. Journal of Mechanical Engineering,2015,51(18):71-82.
[5]秦盛伟,邸黎寅,王连翔,等.渗碳工艺对18CrNiMo7-6合金钢缺口件疲劳性能的影响 [J].材料导报,2024,(2):1-11.
Qin S W, Di L Y, Wang L X, et al. Effect of carburizing process on bending fatigue performance of notched parts of 18CrNiMo7-6 alloy steel [J]. Materials Reports, 2024,(2):1-11.
[6]Jaervenpaeae A, Karjalainen L P, Jaskari M. Effect of grain size on fatigue behavior of type 301LN stainless steel [J]. International Journal of Fatigue, 2014, 65:93-98.
[7]Huang Z W, Lin J P, Zhao Z X, et al. Fatigue response of a grain refined TiAl alloy Ti-44Al-5Nb-1W-1B with varied surface quality and thermal exposure history [J]. Intermetallics, 2017,85:1-14.
[8]HassaniGangaraj S M, Moridi A,Guagliano M, et al. The effect of nitriding, severe shot peening and their combination on the fatigue behavior and microstructure of a lowalloy steel [J]. International Journal of Fatigue, 2014, 62(2):67-76.
[9]刘荣伟,石凤武,孙杨锋,等.裂纹尖端塑性区内金相组织及硬度的分析与研究 [J].材料保护,2020,53(11):166-170.
Liu R W, Shi F W, Sun Y F, et al. Analysis and study of metallographic microstructure and hardness in plastic zone of crack tip [J]. Materials Protection,2020,53(11):166-170.
[10]ASTM E647-23,Standard test method for measurement of fatigue crack growth rates [S].
[11]张春国. 高强钢双金属焊接疲劳裂纹扩展机理及组织演化规律研究 [D]. 西安:长安大学, 2013.
Zhang C G. Study on Fatigue Crack Propagation Mechanism and Microstructure Evolution Law of Highstrength Steel Bimetallic Welding [D]. Xi′an:Chang′an University, 2013.
[12]赵树力,余音,徐武.疲劳多裂纹扩展的常规态型近场动力学分析 [J].哈尔滨工业大学学报,2019,51(4):19-25.
Zhao S L, Yu Y, Xu W. Conventional nearfield dynamic analysis of fatigue multi crack propagation [J]. Journal of Harbin Institute of Technology, 2019,51 (4): 19-25
[13]郭萍,张菁丽,强菲,等.TC17钛合金疲劳裂纹扩展速率 [J].稀有金属材料与工程,2022,51(11):4358-4362.
Guo P, Zhang J L, Qiang F, et al. Fatigue crack propagation rate of TC17 titanium alloy [J]. Rare Metal Materials and Engineering, 2022, 51 (11): 4358-4362.
[14]Zhang C G,Liu R W,Liu Q K,et al.Effect of stop hole-induced material removal on fatigue properties of cracked DT4C steel [J].Materiali in Tehnologije, 2019, 53: 457-65.
|