网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
工业化生产N06625镍基合金板材组织性能
英文标题:Microstructure and properties on N06625 nickel-based alloy plate produced in industrialization
作者:王岩 李吉东 谷宇 韩东 曾莉 
单位:太原钢铁(集团)有限公司 先进不锈钢材料国家重点实验室 
关键词:N06625镍基合金 组织 性能 热处理温度 析出物 
分类号:TG335.3
出版年,卷(期):页码:2024,49(3):47-51
摘要:

以太原钢铁(集团)有限公司工业化生产的N06625镍基合金板材为研究对象,采用金相显微镜、扫描电镜、能谱分析等手段,对其组织性能开展了研究。结果表明:工业化生产的N06625镍基合金板材的轧制态析出物主要以条状的(Nb,Ti)(C,N)以及细小的MoNbC复合析出物为主;高强度等级N06625镍基合金板材的适宜热处理温度为1000 ℃左右,低强度等级N06625镍基合金板材的适宜热处理温度为1150 ℃左右;所生产的N06625镍基合金板材具有优异的冶金纯净度、力学性能及耐腐蚀性能,可为用户选材提供数据支撑。

For N06625 nickel-based alloy plate industrially produced by Taiyuan Iron and Steel Group Co., Ltd., its microstructure and properties were studied by metallographic microscope, scanning electron microscope, energy spectrum analysis and other methods. The results show that in the industrial production of N06625 nickel-based alloy plate, the rolled precipitates are mainly strip-shaped (Nb, Ti) (C, N) and fine MoNbC composite precipitates. The suitable heat treatment temperature of high-strength grade N06625 nickel-based alloy plate is about 1000 ℃, while that of low-strength grade plate is about 1150 ℃. The produced N06625 nickel-based alloy plate has excellent metallurgical purity, mechanical properties and corrosion resistance, providing data support for user to select materials.

基金项目:
山西省关键核心技术和共性技术研发攻关专项(20201102017)
作者简介:
作者简介:王岩(1982-),男,博士,正高级工程师,E-mail:15448681@qq.com
参考文献:

[1]高钰璧,丁雨田,孟斌,等. Inconel 625合金中析出相演变研究进展[J].材料工程,2020,48(5): 13-22.


 

Gao Y B,Ding Y T,Meng B,et al. Research progress in evolution of precipitated phases in Inconel 625 superalloy[J].Journal of Materials Engineering,2020,48(5):13-22.

 

[2]Chen X M, Lin Y C, Chen M S, et al. Microstructural evolution of a nickel-based superalloy during hot deformation[J]. Materials & Design, 2015, 77: 41-49.

 

[3]王方军,刘应龙,时瑶,等. 等温退火处理对Inconel 625合金箔材组织和性能的影响[J].金属热处理,2022,47(3):77-81.

 

Wang F J, Liu Y L, Shi Y, et al. Effect of isothermal annealing treatment on microstructure and properties of Inconel 625 alloy foil[J]. Heat Treatment of Metals, 2022, 47(3): 77-81.

 

[4]蔡远飞,隋毅,朱治愿,等. 超低铁Inconel 625合金的热处理[J].金属热处理,2018,43(9): 175-181.

 

Cai Y F, Sui Y, Zhu Z Y, et al. Heat treatment of ultra-low iron Inconel 625 alloy[J]. Heat Treatment of Metals, 2018,43(9):175-181.

 

[5]王岩,徐芳泓,李阳,等.应变速率对617B镍基高温合金组织演变的影响[J].稀有金属材料与工程,2014,43(12):3027-3030.

 

Wang Y, Xu F H, Li Y, et al. Effect of strain rate on the microstructural evolution of 617B Ni-base superalloy[J]. Rare Metal Materials and Engineering, 2014,43(12):3027-3030.

 

[6]李烁, 闫森, 金奎文, 等. 碳含量及热加工变形量对镍基合金GH3625组织和性能的影响[J]. 特殊钢, 2022, 43(2): 75-78.

 

Li S, Yan S, Jin K W, et al. Effect of carbon content and hot-working deformation on microstructure and properties of nickel base alloy GH3625[J]. Special Steel, 2022, 43(2): 75-78.

 

[7]张春林, 王新鹏, 宁天信, 等. UNS N06625合金热成形工艺的模拟试验和分析[J]. 特殊钢, 2017, 38(2): 1-5.

 

Zhang C L, Wang X P, Ning T X, et al. Simulation test and analysis on hot forming process of alloy UNS N06625[J]. Special Steel, 2017, 38(2): 1-5.

 

[8]Wang J, Dong J X, Zhang M C, et al. Hot working characteristics of nickel-base superalloy 740H during compression[J]. Materials Science and Engineering: A,2013, 566: 61-70.

 

[9]Zhang P, Hu C, Zhu Q, et al. Hot compression deformation and constitutive modeling of GH4698 alloy[J]. Materials & Design, 2015, 65: 1153-1160.

 

[10]丁雨田,马元俊,豆正义,等. 固溶处理温度对GH3625合金热挤压管材微观组织和力学性能的影响[J].材料导报,2018,32(8): 1311-1317.

 

Ding Y T, Ma Y J, Dou Z Y, et al. Effect of solution treatment temperature on microstructure and mechanical properties of GH3625 alloy hot extruded tube[J]. Materials Review, 2018,32(8):1311-1317.

 

[11]蔡梅,刘建平,吴香菊,等. GH625合金锻造工艺研究[J].沈阳航空航天大学学报,2011,28(4):52-59.

 

Cai M, Liu J P, Wu X J, et al. Technical study on GH625 alloy forging[J]. Journal of Shenyang Aerospace University,2011,28(4):52-59.


 

[12]Jiang H, Yang L,Dong J X, et al. The recrystallization model and microstructure prediction of alloy 690 during hot deformation[J]. Materials & Design, 2016,104: 162-173.

 

[13]杨浩, 王方军, 李采, 等. 镍基高温合金的熔炼工艺研究进展[J]. 特殊钢, 2023, 44(3): 1-9.

 

Yang H, Wang F J, Li C, et al. Research progress on the melting process of nickel based high-temperature alloys[J]. Special Steel, 2023, 44(3): 1-9.

 

[14]ASME SB-443-2023,Specification for nickel-chromium-molybdenum-columbium alloy (UNS N06625) and nickel-chromium-molybdenum-silicon alloy (UNS N06219) plate, sheet and strip[S].

 

[15]ASTM E 8/E 8M-21,Standard test methods for tension testing of metallic materials[S].

 

[16]王岩. 镍基合金N06625变形-热处理组织演变特性研究[A]. 2019年(首届)中国金属学会不锈钢科技发展论坛[C].北京,2019.

 

Wang Y. Study on microstructure evolution characteristics of N06625 nickel-based alloy during deformation-heat treatment[A]. First China Metal Society Stainless Steel Technology Development Forum in 2019[C].Beijing,2019.

 

[17]GB/T 10561—2023,钢中非金属夹杂物含量的测定标准评级图显微检验法[S].

 

GB/T 10561—2023,Determination of content of nonmetallic inclusions in steel—Micrographic method using standard diagrams[S].

 

[18]ASTM A262C-2021,Standard practices for detecting susceptibility to intergranular attack in austenitic stainless steels[S].

 

[19]ASTM G28-2015,Standard test methods for detecting susceptibility to intergranular corrosion in wrought, nickel-rich, chromium-bearing alloys[S].

 

[20]ASTM G48-2020,Standard test methods for pitting and crevice corrosion resistance of stainless steels and related alloys by use of ferric chloride solution[S].


 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9