网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于弹性模量变化的管材绕弯截面畸变有限元分析
英文标题:Finite element analysis on cross-section distortion in tube rotary draw bending based on variation of elastic modulus
作者:万涛1 方军1 欧阳芳 2 尚文瑄1 鲁世强2 王克鲁2 
单位:1. 江西科技师范大学 2. 南昌航空大学 
关键词:高强不锈钢管 绕弯 截面畸变率 弹性模量 多因素敏感性分析 
分类号:TG386
出版年,卷(期):页码:2024,49(3):52-59
摘要:

为了实现0Cr21Ni6Mn9N高强不锈钢管材精确绕弯成形,建立了考虑弹性模量变化的管材绕弯成形全过程有限元模型,研究了工艺参数对管材绕弯截面畸变的影响,并分析了截面畸变对工艺参数的敏感性。结果表明:考虑弹性模量变化时,截面畸变率的变化趋势与未考虑弹性模量变化时基本一致,但数值较大,且更接近实验结果;截面畸变率随着管材与芯模之间的摩擦因数fm、管材与压力模之间的间隙Cp、管材与芯模的间隙Cm的增大或管材与压力模之间的摩擦因数fp、芯模伸出量e的减小而增大;截面畸变对e最为敏感,其次依次为fm、Cm、fp,而对Cp最不敏感;最佳工艺参数范围为:fp=0.25~0.40、fm=0.05~0.15、Cp=0.075~0.100 mm、Cm=0.075~0.150 mm、e=0.5~2.0 mm。

To realize the precise rotary draw bending forming of 0Cr21Ni6Mn9N high-strength stainless steel tube, the whole process finite element model of tube rotary draw bending considering the variation of elastic modulus was established, the impacts of process parameters on cross-section distortion during the tube rotary draw bending were investigated, and the sensitivities of cross-section distortion to process parameters were analyzed. The results indicate that when considering the variation of elastic modulus, the variation trend of cross-section distortion rate is basically the same with that without considering the variation of elastic modulus, but the value is relatively large and is closer to the experimental results. The cross-section distortion rate increases with the increasing of friction factor fm between tube and mandrel, clearance  Cp between tube and pressure die, clearance Cm between tube and mandrel or with the decreasing of friction factor fp between tube and pressure die, axial feeding  e of mandrel, and the cross-sedion distortion is most sensitive to e, followed by fm, Cm and fp, while that is least sensitive to Cp. The optimal process parameters range are as follows:fp=0.25-0.40、fm=0.05-0.15、Cp=0.075-0.100 mm、Cm=0.075-0.150 mm、e=0.5-2.0 mm. 

基金项目:
江西省自然科学基金资助项目(20192BAB216022);江西省教育厅科学技术研究项目(GJJ201126,GJJ180615)
作者简介:
作者简介:万涛(1974-),男,学士,讲师,E-mail:490255128@qq.com;通信作者:方军(1984-),男,博士,副教授,E-mail:fangjun020j13@163.com
参考文献:

[1]SAE AMS5561H—2021, Steel, corrosion and heat-resistant, welded and drawn or seamless and drawn tubing 9.0Mn-20Cr-6.5Ni-0.28N high-pressure hydraulic[S]. 


 

[2]Fang J, Lu S Q, Wang K L, et al. Springback law of high strength 21-6-9 stainless steel tube in numerical control bending under different process parameters[J]. Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture, 2017,231(10):1783-1792.

 

[3]方军, 鲁世强, 王克鲁, 等. 0Cr21Ni6Mn9N不锈钢管材数控弯曲截面畸变有限元分析[J], 塑性工程学报, 2013, 20(5): 71-76.

 

Fang J, Lu S Q, Wang K L, et al. FE analysis of section distortion in numerical control bending of the 0Cr21Ni6Mn9N stainless steel tube[J]. Journal of Plasticity Engineering, 2013, 20(5): 71-76.

 

[4]鄂大辛, 周大军. 金属管材弯曲理论及成形缺陷分析[M]. 北京: 北京理工大学出版社, 2016.

 

E D X, Zhou D J. Metal Tube Bending: Theory and Forming Defects Analysis[M]. Beijing: Beijing Institute of Technology Press, 2016.

 

[5]Fang J, Ouyang F, Lu S Q, et al. Variation of elastic modulus of high strength 21-6-9 tube and its influences on forming quality in numerical control rotary draw bending[J]. Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science, 2021, 235(21):5684-5694.

 

[6]Paulsen F, Welo T. A design method for prediction of dimensions of rectangular hollow sections formed in stretch bending[J]. Journal of Materials Processing Technology, 2002,128(1-3):48-66.

 

[7]Lu S Q, Fang J, Wang K L. Plastic deformation analysis and forming quality prediction of tube NC bending[J]. Chinese Journal of Aeronautics, 2016, 29(5):1436-1444.

 

[8]Zhang Z Q. Theoretical prediction for maximum residual cross-sectional deformation of thin-walled cylindrical steel tubes under pure plastic bending[J]. Thin-Walled Structures, 2018, 133:120-133.

 

[9]Fu M Y, Wang Z L, Zhang S Y, et al. Full-cross-section deformation characterization of Cu/Al bimetallic tubes under rotary-draw-bending based on physics-driven B-spline curves fitting[J]. Materials & Design,2022, 215:110493.

 

[10]Liu K X, Liu Y L, Yang H, et al. Experimental study on cross-section distortion of thin-walled rectangular 3A21 aluminium alloy tube by rotary draw bending[J]. International Journal of Materials and Product Technology, 2011, 42(1-2):110-120.

 

[11]Safdarian R, Kord A. Experimental investigation of effective parameters in the tube rotary bending process[J]. Materials Research Express, 2019, 6(6): 066531. 

 

[12]Kale A V, Thorat H T. Effect of precompression on ovality of pipe after bending[J]. Journal of Pressure Vessel Technology, 2009,131(1):011207.

 

[13]Guo X Z, Cheng X, Xu Y, et al. Finite element modelling and experimental investigation of the impact of filling different materials in copper tubes during 3D free bending process[J].Chinese Journal of Aeronautics,

2020, 33(2):721-729.

 

[14]Liu H L, Liu Y L, Du X Y. Cross-sectional deformation of high strength steel rectangular welded tube in rotary draw bending with different constitutive relationships[J]. The International Journal of Advanced Manufacturing Technology, 2020, 107(9-10):4333-4344.

 

[15]Liu H L, Liu Y L. Cross section deformation of heterogeneous rectangular welded tube in rotary draw bending considering different yield criteria[J]. Journal of Manufacturing Processes, 2021, 61:303-310.

 

[16]Zhan M, Huang T, Zhang P P, et al. Variation of Young′s modulus of high-strength TA18 tubes and its effects on forming quality of tubes by numerical control bending[J]. Materials & Design, 2014, 53: 809-815.

 

[17]Fang J, Lu S Q, Wang K L, et al. Three-dimensional finite element model of high strength 21-6-9 stainless steel tube in rotary draw bending and its application[J]. Indian Journal of Engineering and Materials Sciences, 2015, 22(2): 141-152.

 

[18]Fang J, Lu S Q, Wang K L, et al. Effect of mandrel on cross section quality in numerical control bending process of stainless steel 2169 small diameter tube[J].Advances in Materials Science and Engineering, 2013, 2013(1): 849495. 

 

[19]Fang J, Lu S Q, Wang K L, et al. Deformation behaviors of 21-6-9 stainless steel tube numerical control bending under different friction conditions[J]. Journal of Central South University, 2015, 22(8): 2864-2874.

 

[20]方军, 鲁世强, 王克鲁, 等. 管模间隙对21-6-9高强不锈钢管数控绕弯成形质量的影响[J]. 北京理工大学学报, 2015, 35(9): 886-891.

 

Fang J, Lu S Q, Wang K L, et al. Effect of clearance between tube and dies on forming quality in NC bending process of high strength 21-6-9 stainless steel tube[J]. Transactions of Beijing Institute of Technology, 2015, 35(9): 886-891. 

 

[21]欧阳芳, 鲁世强, 方军, 等. 几何参数对变弹性模量条件下21-6-9管绕弯成形质量的影响[J]. 塑性工程学报, 2020, 27(1): 27-37.

 

Ouyang F, Lu S Q, Fang J, et al. Effect of geometrical parameters on forming quality of 21-6-9 tube in rotary draw bending under condition of variable elastic modulus[J]. Journal of Plasticity Engineering, 2020, 27(1): 27-37.

 

[22]方军, 欧阳芳, 尚文瑄, 等. 工艺参数对弹性模量变化条件下高强不锈钢管绕弯回弹行为的影响[J]. 锻压技术, 2022, 47(11): 137-145.

 

Fang J, Ouyang F, Shang W X, et al. Influence of process parameters on springback behavior in rotary draw bending under variable elastic modulus condition for high strength stainless steel tube [J]. Forging & Stamping Technology, 2022, 47(11): 137-145.

 

[23]方军, 欧阳芳, 尚文瑄, 等. 工艺参数对弹性模量变化条件下管材绕弯成形截面畸变的影响[J]. 塑性工程学报, 2023, 30(8): 68-75.

 

Fang J, Ouyang F, Shang W X, et al. Effects of process parameters on cross section distortion of tube rotary draw bending under condition of elastic modulus variation [J]. Journal of Plasticity Engineering, 2023, 30 (8): 68-75.

 

[24]Yang H, Li H, Zhan M. Friction role in bending behaviors of thin-walled tube in rotary-draw-bending under small bending radii[J]. Journal of Materials Processing Technology, 2010, 210(15): 2273-2284.

 

[25]Li H, Yang H, Zhan M, et al. Role of mandrel in NC precision bending process of thin-walled tube[J]. International Journal of Machine Tools and Manufacture, 2007, 47(7-8):1164-1175.

 

[26]王同海. 管材塑性加工技术[M]. 北京:机械工业出版社, 1998.

 

Wang T H. Tube Plastic Processing Technology[M]. Beijing: China Machine Press, 1998.

 

[27]方军, 鲁世强, 王克鲁, 等. 21-6-9高强不锈钢管数控弯曲回弹对材料参数的敏感性[J]. 西安交通大学学报, 2015,49(3):136-142.

 

Fang J, Lu S Q, Wang K L, et al. Sensitivity analysis of springback to material parameters in high strength 21-6-9 stainless steel tube NC bending[J]. Journal of Xi′an Jiaotong University, 2015,49(3):136-142.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9