[1]王晓强,张彪,崔凤奎,等.超声滚挤压轴承套圈表面性能预测模型建立[J].塑性工程学报,2022,29(6):25-32.
Wang X Q, Zhang B, Cui F K, et al. Construction of surface performance prediction model of ultrasonic roll extruded bearing ring [J]. Journal of Plasticity Engineering, 2022, 29(6): 25-32.
[2]任雁,刘佳,刘斌,等.超声滚挤压风电轴承材料表面粗糙度加工参数敏感性研究[J].锻压技术,2022,47(1):98-105.
Ren Y, Liu J, Liu B, et al. Sensitivity study on surface roughness processing parameters for wind turbine bearing materials by ultrasonic rolling extrusion [J]. Forging & Stamping Technology, 2022, 47(1): 98-105.
[3]王晓强,阮孝林,崔凤奎,等.超声滚挤压表面硬度预测模型研究[J].机械强度,2020,42(4):811-816.
Wang X Q, Ruan X L, Cui F K, et al. Study on prediction model of surface hardness in ultrasound rolling extrusion [J]. Journal of Mechanical Strength, 2020, 42(4): 811-816.
[4]肖友谱. 超声滚挤压对ZG20SiMn钢表面性能的影响[D].赣州:江西理工大学,2021.
Xiao Y P. Effect of Ultrasonic Roller Extrusion on Surface Properties of ZG20SiMn Steel[D]. Ganzhou: Jiangxi University of Science and Technology, 2021.
[5]程明龙,肖勇,刘康宁,等.超声振动滚挤压对金属表面微观组织的影响[J].工具技术,2019,53(7):73-76.
Cheng M L, Xiao Y, Liu K N, et al. Investigations on effects of ultrasonic rolling process on surface microstructure of steel [J]. Tool Engineering, 2019, 53(7): 73-76.
[6]Lan S L, Qi M, Zhu Y F, et al. Ultrasonic rolling strengthening effect on the bending fatigue behavior of 12Cr2Ni4A steel gears[J]. Engineering Fracture Mechanics,2023,279:109024.
[7]Zhu X T, Liu P T, Zhang C, et al. Study on surface integrity and fatigue properties of TC4 titanium alloy by surface ultrasonic rolling[J]. Materials,2023,16(2):485.
[8]Ren Z H, Li Z H, Zhou S H, et al. Study on surface properties of Ti-6Al-4V titanium alloy by ultrasonic rolling[J]. Simulation Modelling Practice and Theory, 2022, 121:102643.
[9]Wang J T, Zhang C S, Shen X H, et al. A study on surface integrity of laser cladding coatings post-treated by ultrasonic burnishing coupled with heat treatment[J]. Materials Letters,2022,308:131136.
[10]于月民, 盖芳芳, 丁元柱. 三种二维快速伺服刀架仿真分析[J]. 广东石油化工学院学报, 2022, 32(6):44-45,49.
Yu Y M, Gai F F, Ding Y Z. Simulation analysis of three 2-DOF fast servo tool [J]. Journal of Guangdong University of Petrochemical Technology, 2022, 32(6):44-45,49.
[11]张正礼. 尾翼前缘结构抗鸟撞仿真分析[J]. 计算机仿真, 2022, 39(12): 69-72,164.
Zhang Z L. Numerical simulation for bird impact resistance of tail leading edge structure [J]. Computer Simulation, 2022, 39(12): 69-72,164.
[12]卢也森, 朱志武, 谢奇峻. 基于改进J-C模型的42CrMo钢动态本构关系研究[J]. 四川理工学院学报:自然科学版, 2016, 29(3): 61-65.
Lu Y S, Zhu Z W, Xie Q J. Study on dynamic constitutive relation of 42CrMo steel based on Johnson-Cook model [J]. Journal of University of Science & Engineering: Natural Science Edition, 2016, 29(3): 61-65.
[13]路彦君. 镍基高温合金Inconel718微铣削残余应力与加工硬化研究[D]. 大连: 大连理工大学, 2016.
Lu Y J. Researches on Residual Stress and Work Hardening on Micro-milling Nickel-base Superalloy Inconel718 [D]. Dalian: Dalian University of Technology, 2016.
[14]Dkhichi F, Oukarfi B, Fakkar A, et al. Parameter identification of solar cell model using Levenberg-Marquardt algorithm combined with simulated annealing [J]. Solar Energy, 2014, 110:781-788.
[15]史贵连, 李凯扬, 叶福丽. 基于自适应模拟退火算法的生物体三维温度场重构研究[J]. 机械工程学报, 2016, 52(6): 166-173.
Shi G L, Li K Y, Ye F L. Research on 3D temperature field in biological tissue based on adaptive simulated annealing algorithm[J]. Journal of Mechanical Engineering, 2016, 52(6): 166-173.
|