网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
TA1纯钛超声振动辅助压缩变形行为及本构建模
英文标题:Deformation behavior and constitutive modeling for TA1 pure titanium under ultrasonic vibration assisted compression
作者:张海栋 邓磊 唐学峰 张茂 王新云 金俊松 
单位:华中科技大学 
关键词:TA1纯钛 超声振动 超声软化 残余软化 流变行为 微观组织 
分类号:TG316
出版年,卷(期):页码:2024,49(3):107-113
摘要:

通过TA1纯钛的超声振动辅助压缩实验,探究了超声振动对材料流变行为以及微观组织演化的影响,分析了相应的声塑性作用机理,并基于遗传算法-人工神经网络(GA-ANN)建立了本构模型。结果表明:TA1纯钛中出现了明显的超声软化和残余软化现象。超声振动的残余软化效应可分为随应变衰减的非稳态部分和可长期保持的稳态部分,并且非稳态残余软化的占比随着超声振幅的增加而增加。超声振动作用下孪晶的快速饱和及下降导致了稳态的残余软化效应,而超声振动停止后均匀分布的位错的快速缠结则导致了非稳态残余软化效应的衰减。GA-ANN模型表现出较高的精度以及泛化能力,可准确描述随应变和超声振幅变化的超声软化和残余软化效应。

 

The influences of ultrasonic vibration on the rheology behavior and microstructure evolution of TA1 pure titanium were investigated by the ultrasonic vibration assisted compression tests, and the corresponding mechanism of acoustoplasticity was discussed. Then, the constitutive model was constructed based on genetic algorithm-artificial neural network (GA-ANN). The results show that there are obvious ultrasonic softening and residual softening phenomena in TA1 pure titanium. The residual softening effect of ultrasonic vibration can be divided into the unsteady part which decays with strain and the steady part which can be maintained for a long time, and the proportion of unsteady residual softening increases with the increasing of ultrasonic amplitude. The rapid saturation and decline of twins under ultrasonic vibration action lead to steady residual softening effect, while the rapid entanglement of uniformly distributed dislocations after stopping ultrasonic vibration leads to the attenuation of unsteady residual softening effect. GA-ANN model shows high precision and generalization ability, and can accurately describe the ultrasonic softening and residual softening effects that vary with strain and ultrasonic amplitude.

基金项目:
国家自然科学基金资助项目(52090043)
作者简介:
作者简介:张海栋(1997-),男,博士研究生,E-mail:zhanghd@hust.edu.cn;通信作者:邓磊(1982-),男,工学博士,教授,E-mail:denglei@hust.edu.cn
参考文献:

[1]Wang X Q, Han W Z. Oxygen-gradient titanium with high strength, strain hardening and toughness [J]. Acta Materialia, 2023, 246: 118674.


 

[2]Yang H, Li H, Sun H, et al. Anisotropic plasticity and fracture of alpha titanium sheets from cryogenic to warm temperatures [J]. International Journal of Plasticity, 2022, 156: 103348.

 

[3]Zheng Q, Shimizu T, Yang M. Scale effect on springback behavior of pure titanium foils in microbending at elevated temperature [J]. Journal of Materials Processing Technology, 2016, 230: 233-243.

 

[4]Wang Y C, Zhong Q, Hua R S, et al. Ultrasonic vibration-assisted stamping of serpentine micro-channel for titanium bipolar plates used in proton-exchange membrane fuel cell [J]. Materials, 2023, 16(9):3461.

 

[5]张海栋, 邓磊, 王新云, 等. 振动辅助塑性成形机理及应用研究进展 [J]. 航空制造技术, 2020, 63(16): 22-31.

 

Zhang H D, Deng L, Wang X Y, et al. Research progress on mechanism and application of vibration assisted plastic forming [J]. Aeronautical Manufacturing Technology, 2020, 63(16): 22-31.

 

[6]孟德安, 朱成成, 董渊哲, 等. 振动辅助塑性成形工艺及机理的研究进展 [J]. 锻压技术, 2022, 47(4): 1-13.

 

Meng D A, Zhu C C, Dong Y Z, et al. Research progress on vibration-assisted plastic forming process and mechanism [J]. Forging & Stamping Technology, 2022, 47(4): 1-13.

 

[7]Hu J, Shimizu T, Yang M. Investigation on ultrasonic volume effects: Stress superposition, acoustic softening and dynamic impact [J]. Ultrasonics Sonochemistry, 2018, 48: 240-248.

 

[8]Dutta R K, Petrov R H, Delhez R, et al. The effect of tensile deformation by in situ ultrasonic treatment on the microstructure of low-carbon steel [J]. Acta Materialia, 2013, 61(5): 1592-1602.

 

[9]Wang X W, Wang C J, Liu Y, et al. An energy based modeling for the acoustic softening effect on the Hall-Petch behavior of pure titanium in ultrasonic vibration assisted micro-tension [J]. International Journal of Plasticity, 2021, 136: 102879.

 

[10]Li C, Tang X F, Zhang H D, et al. Ultrasonic and size effects on the rheological behavior of CoCrFeMnNi high-entropy alloy [J]. Journal of Alloys and Compounds, 2022, 913: 165238.

 

[11]张明玉, 运新兵, 伏洪旺. 冷轧TA1钛带材表面缺陷研究[J]. 锻压技术, 2022, 47(6): 125-131,198.

 

Zhang M Y, Yun X B, Fu H W. Study on surface defects for cold rolled TA1 titanium strip [J]. Forging & Stamping Technology, 2022, 47(6): 125-131,198.

 

[12]郑华雷, 杨合, 李宏伟. 纯钛压缩变形下的晶体塑性有限元分析 [J]. 塑性工程学报, 2013, 20(1): 95-99.

 

Zhen H L, Yang H, Li H W. Crystal plasticity finite element modeling for uniaxial compression of commercially pure titanium [J]. Journal of Plasticity Engineering, 2013, 20(1): 95-99.

 

[13]Yao Z H, Kim G Y, Wang Z H, et al. Acoustic softening and residual hardening in aluminum: Modeling and experiments [J]. International Journal of Plasticity, 2012, 39: 75-87.

 

[14]Zhou H Y, Cui H Z, Qin Q H, et al. A comparative study of mechanical and microstructural characteristics of aluminium and titanium undergoing ultrasonic assisted compression testing [J]. Materials Science and Engineering:A, 2017, 682: 376-388.

 

[15]Won J W, Park C H, Hong S G, et al. Deformation anisotropy and associated mechanisms in rolling textured high purity titanium [J]. Journal of Alloys and Compounds, 2015, 651: 245-254.

 

[16]Chang B Q, Yi Z X, Duan J A, et al. Microstructure evolution characterization of GH4169 superalloy under ultrasonic high-frequency vibration energy [J]. Materials Characterization, 2023, 198: 112717.

 

[17]Lin J, Pruncu C, Zhu L H, et al. Deformation behavior and microstructure in the low-frequency vibration upsetting of titanium alloy [J]. Journal of Materials Processing Technology, 2022, 299: 117360.

 

[18]Siu K W, Ngan A H W, Jones I P. New insight on acoustoplasticity-Ultrasonic irradiation enhances subgrain formation during deformation [J]. International Journal of Plasticity, 2011, 27(5): 788-800.

 

[19]Li Z, Li X, Huang Z Y, et al. Ultrasonic-vibration-enhanced plasticity of an entropic alloy at room temperature [J]. Acta Materialia, 2022, 225: 117569.

 

[20]张驰, 郭媛, 黎明. 人工神经网络模型发展及应用综述 [J]. 计算机工程与应用, 2021, 57(11): 57-69.

 

Zhang C, Guo Y, Li M. Review of development and application of artificial neural network models [J]. Computer Engineering and Applications, 2021, 57(11): 57-69.

 

[21]马永杰, 云文霞. 遗传算法研究进展 [J]. 计算机应用研究, 2012, 29(4): 1201-1206,1210.

 

Ma Y J, Yun W X. Research progress of genetic algorithm [J]. Application Research of Computers, 2012, 29(4): 1201-1206,1210.

 

[22]Yu G Q, Bao X Q, Xu X, et al. Constitutive modeling of Ta-rich particle reinforced Zr-based bulk metallic composites in the supercooled liquid region by using evolutionary artificial neural network [J]. Journal of Alloys and Compounds, 2023, 938: 168488.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9