网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
铝合金开闭机构舱门超塑气胀工艺
英文标题:Superplastic bulging process of aluminum alloy opening and closing mechanism hatch
作者:赵佳乐1 2 何广忠3 陈冉冉1 2 李源池1 2 王国峰1 2 
单位:1.哈尔滨工业大学 金属精密热加工国家级重点实验室 2.哈尔滨工业大学 材料科学与工程学院 3.中国中车长春客车轨道股份有限公司 
关键词:5083铝合金 开闭机构舱门 超塑气胀 厚度均方差 极限减薄率 
分类号:TG306
出版年,卷(期):页码:2024,49(3):114-126
摘要:

为了响应轨道交通领域新时代发展需求,利用有限元分析软件MSC.Marc模拟了开闭机构舱门主体件在温度为480 ℃、应变速率为0.001 s-1条件下的整体超塑气胀、快速超塑气胀、均匀快速超塑气胀的3种成形工艺,预测了材料的变形流动规律及成形缺陷,厚度均方差由整体超塑气胀时的0.129 mm依次降低至快速超塑气胀时的0.088 mm和均匀快速超塑气胀时的0.072 mm,极限减薄率由32.6%依次降低至25.1%和22.3%。结果表明,集热冲压与超塑正反胀工艺优势于一体的刚柔介质协调成形的均匀快速超塑气胀工艺最佳,并将其作为实际成形工艺路径。

In order to respond to the development demand of the new era in the field of rail transit, three forming processes of integral superplastic bulging, rapid superplastic bulging and uniform and rapid superplastic bulging for the main body of opening and closing mechanism hatch at 480 ℃ and 0.001 s-1 were simulated by FEA software MSC.Marc, and the material deformation flow patterns and forming defects were predicted. In addition, the mean square deviation of thickness decreases from 0.129 mm for the integral superplastic bulging to 0.088 mm for the rapid superplastic bulging and 0.072 mm for the uniform and rapid superplastic bulging, and the ultimate thinning rate decreases from 32.6% to 25.1% and 22.3%, respectively. The results show that the uniform and rapid superplastic process of rigid-flexible medium coordinated forming is the best, which combines the advantages of hot stamping and superplastic forward and reverse bulging, and it is taken as the actual forming process path.

基金项目:
国家自然科学基金资助项目(51875122)
作者简介:
作者简介:赵佳乐(2000-),男,硕士研究生,E-mail:zhaojiale2396@163.com;通信作者:王国峰(1973-),男,博士,教授,E-mail:gfwang@hit.edu.cn
参考文献:

[1]王国峰, 王海伦, 梁继业, 等. 轨道交通用工业AA5083铝合金快速超塑性成形技术研究[J]. 塑性工程学报, 2019, 26(2): 37-42.


 

Wang G F,Wang H L,Liang J Y,et al. Research on quick superplastic forming technology of industrial AA5083 aluminum alloy for rail traffic[J]. Journal of Plasticity Engineering, 2019, 26(2): 37-42.

 

[2]Chentouf S M, Belhadj T, Bombardier N, et al. Influence of predeformation on microstructure evolution of superplastically formed Al 5083 alloy[J]. The International Journal of Advanced Manufacturing Technology, 2017, 88(9-12): 2929-2937.

 

[3]Liu J Y, Zhang K F. Influence of electric current on superplastic deformation mechanism of 5083 aluminium alloy[J]. Materials Science and Technology, 2016, 32(6): 540-546.

 

[4]马怀宪,彭大暑.超塑变形铝基合金(2)[J]. 轻金属, 1982,(1):54-57,66.

 

Ma H X, Peng D S. Superplastic deformed aluminum-based alloy(2)[J]. Light Metals, 1982, (1):54-57,66.

 

[5]焦雷.原位颗粒增强铝基复合材料的塑性变形行为及性能研究[D].镇江:江苏大学,2014.

 

Jiao L. Study on Plastic Deformation Behavior and Properties of in Situ Particle Reinforced Aluminum Matrix Composites[D]. Zhenjiang:Jiangsu University, 2014.

 

[6]杨超. 轨道交通用5083Al覆盖件的超塑成形工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.

 

Yang C. Research on Superplastic Forming Process of 5083 Aluminium Alloy Covers for Rail Transit[D]. Harbin:Harbin Institute of Technology, 2017.

 

[7]王坤, 肖思维. 时速350 km中国标准动车组前端开闭机构的研制[J]. 铁道车辆, 2022, 60(2): 102-105.

 

Wang K, Xiao S W. Development of front hatch for chinese standard multiple units with speed of 350 km/h[J]. Rolling Stock, 2022, 60(2): 102-105.

 

[8]梁继业, 杜志豪, 林海朋, 等. 工业级5083铝合金市域车车门正反胀超塑性成形工艺[J]. 塑性工程学报, 2022, 29(1): 66-72.

 

Liang J Y, Du Z H, Lin H P, et al. Direct-reverse bulging superplastic forming process of urban railway door of industrial 5083 aluminum alloy[J]. Journal of Plasticity Engineering, 2022, 29(1): 66-72.

 

[9]徐晔. 国产5083铝合金高速列车蒙皮快速超塑成形工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.

 

Xu Y. Research on Rapid Superplastic Forming Process of Domestic 5083 Aluminum Alloy High-speed Train Skin[D]. Harbin: Harbin Institute of Technology, 2020.

 

[10]Du Z H, Wang G F, Wang H L. The process design and rapid superplastic forming of industrial AA5083 for a fender with a negative angle in a small batch[J]. Metals, 2021, 11(3): 497.

 

[11]王雁飞, 林海朋, 隋礼平, 等. 均匀快速超塑成形技术在市域车铝合金车头蒙皮上的应用[J]. 塑性工程学报, 2021, 28(6): 104-110.

 

Wang Y F,Lin H P,Sui L P,et al.Application of uniform quick superplastic forming technology on front skin of aluminum alloy for urban vehicles[J]. Journal of Plasticity Engineering, 2021, 28(6): 104-110.

 

[12]Akkus N, Manabe K I, Kawahara M, et al. A finite element modelling for superplastic bulging of titanium alloy tube and pressure path optimization[J]. Materials Science Forum, 1996, 243-245: 729-734.

 

[13]Chen M H, Gao L, Zhu Z S, et al. Optimization of technological parameters in the calescent superplastic bulge forming of Ti-6Al-4V alloys sheet based on fuzzy neural network[J]. Materials Science Forum, 2004, 471-472: 596-602.

 

[14]Usugi T, Akkus N, Kawahara M, et al. An analytical model of the superplastic bulge forming of sheet metal[J]. Materials Science Forum, 1999, 304-306: 735-740.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9