[1]王国峰, 王海伦, 梁继业, 等. 轨道交通用工业AA5083铝合金快速超塑性成形技术研究[J]. 塑性工程学报, 2019, 26(2): 37-42.
Wang G F,Wang H L,Liang J Y,et al. Research on quick superplastic forming technology of industrial AA5083 aluminum alloy for rail traffic[J]. Journal of Plasticity Engineering, 2019, 26(2): 37-42.
[2]Chentouf S M, Belhadj T, Bombardier N, et al. Influence of predeformation on microstructure evolution of superplastically formed Al 5083 alloy[J]. The International Journal of Advanced Manufacturing Technology, 2017, 88(9-12): 2929-2937.
[3]Liu J Y, Zhang K F. Influence of electric current on superplastic deformation mechanism of 5083 aluminium alloy[J]. Materials Science and Technology, 2016, 32(6): 540-546.
[4]马怀宪,彭大暑.超塑变形铝基合金(2)[J]. 轻金属, 1982,(1):54-57,66.
Ma H X, Peng D S. Superplastic deformed aluminum-based alloy(2)[J]. Light Metals, 1982, (1):54-57,66.
[5]焦雷.原位颗粒增强铝基复合材料的塑性变形行为及性能研究[D].镇江:江苏大学,2014.
Jiao L. Study on Plastic Deformation Behavior and Properties of in Situ Particle Reinforced Aluminum Matrix Composites[D]. Zhenjiang:Jiangsu University, 2014.
[6]杨超. 轨道交通用5083Al覆盖件的超塑成形工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.
Yang C. Research on Superplastic Forming Process of 5083 Aluminium Alloy Covers for Rail Transit[D]. Harbin:Harbin Institute of Technology, 2017.
[7]王坤, 肖思维. 时速350 km中国标准动车组前端开闭机构的研制[J]. 铁道车辆, 2022, 60(2): 102-105.
Wang K, Xiao S W. Development of front hatch for chinese standard multiple units with speed of 350 km/h[J]. Rolling Stock, 2022, 60(2): 102-105.
[8]梁继业, 杜志豪, 林海朋, 等. 工业级5083铝合金市域车车门正反胀超塑性成形工艺[J]. 塑性工程学报, 2022, 29(1): 66-72.
Liang J Y, Du Z H, Lin H P, et al. Direct-reverse bulging superplastic forming process of urban railway door of industrial 5083 aluminum alloy[J]. Journal of Plasticity Engineering, 2022, 29(1): 66-72.
[9]徐晔. 国产5083铝合金高速列车蒙皮快速超塑成形工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
Xu Y. Research on Rapid Superplastic Forming Process of Domestic 5083 Aluminum Alloy High-speed Train Skin[D]. Harbin: Harbin Institute of Technology, 2020.
[10]Du Z H, Wang G F, Wang H L. The process design and rapid superplastic forming of industrial AA5083 for a fender with a negative angle in a small batch[J]. Metals, 2021, 11(3): 497.
[11]王雁飞, 林海朋, 隋礼平, 等. 均匀快速超塑成形技术在市域车铝合金车头蒙皮上的应用[J]. 塑性工程学报, 2021, 28(6): 104-110.
Wang Y F,Lin H P,Sui L P,et al.Application of uniform quick superplastic forming technology on front skin of aluminum alloy for urban vehicles[J]. Journal of Plasticity Engineering, 2021, 28(6): 104-110.
[12]Akkus N, Manabe K I, Kawahara M, et al. A finite element modelling for superplastic bulging of titanium alloy tube and pressure path optimization[J]. Materials Science Forum, 1996, 243-245: 729-734.
[13]Chen M H, Gao L, Zhu Z S, et al. Optimization of technological parameters in the calescent superplastic bulge forming of Ti-6Al-4V alloys sheet based on fuzzy neural network[J]. Materials Science Forum, 2004, 471-472: 596-602.
[14]Usugi T, Akkus N, Kawahara M, et al. An analytical model of the superplastic bulge forming of sheet metal[J]. Materials Science Forum, 1999, 304-306: 735-740.
|