网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于Workbench的重型电动数控螺旋压力机机身轻量化设计
英文标题:Lightweight design on heavy-duty electric CNC screw press body based on Workbench
作者:姚佰成1 朱元胜2 3 赵至友2 3 赵国勇1 陈伟2 3 
单位:1.山东理工大学 2.中锻智能装备设计院(青岛)有限公司 3.青岛宏达锻压机械有限公司 
关键词:压力机机身 拓扑优化 轻量化 刚度 预紧工况 打击工况 
分类号:TG315
出版年,卷(期):页码:2024,49(3):178-185
摘要:

 针对当前压力机机身笨重与材料浪费的问题,以EP-12500重型电动数控螺旋压力机机身为研究对象,探索压力机机身结构的轻量化设计方法。首先,基于Workbench 对压力机机身进行有限元分析,得到机身应力值远小于材料屈服强度的非承载区域;然后,采用拓扑优化模块对机身非承载区域进行拓扑优化;最后,以质量最小化为目标,确定机身结构材料去除区域的具体位置,实现对机身结构的轻量化设计。优化结果表明:优化后压力机机身的体积与质量均减小了9.65%,实现了机身轻量化,减少了制造成本;机身预紧工况下最大变形量增加了0.17 mm,打击工况下最大变形量增加不足0.01 mm,与原机身变形基本一致;机身预紧工况下垂直刚度为8.21 MN·mm-1,打击工况下垂直刚度为13.08 MN·mm-1,均满足使用要求;机身预紧工况下最大等效应力降低了2.51%,打击工况下最大等效应力降低了18.3%,降低了底座承受的冲击力,提高了底座的使用寿命。

 Aiming at the problem of heavy press body and waste of materials, for EP-12500 heavy-duty electric CNC screw press body, the method of lightweight design for press body structure was explored. Firstly, the finite element analysis on the press body was conducted based on Workbench, and the non-bear zone where the stress value of press body was far less than the yield strength of material was obtained. Then, the non-bear zone of press body was topologically optimized by topology optimization modules. Finally, with the goal of minimizing the mass, the specific position of material removal for the press body structure was determined to realize the lightweight design of press body structure. The optimization results show that the volume and mass of press body are reduced by 9.65% after optimization, which realizes the lightweight of press body and reduces the manufacturing cost. The maximum deformation amount of press body under the preloading condition is increased by 0.17 mm, and the maximum deformation amount under the striking condition is increased by less than 0.01 mm, which is basically consistent with the original press body deformation. The vertical stiffness of press body under the preloading condition is 8.21 MN·mm-1 , and the vertical stiffness under the striking condition is 13.08 MN·mm-1, which all meet the use requirements. The maximum equivalent stress of press body under the preloading condition is reduced by 2.51%, and the maximum equivalent stress under  the striking condition is reduced by 18.3%, which reduces the impact force borne by the base and improves the service life of base.

基金项目:
2022年青岛市科技计划重点研发专项(22-3-2-qljh-10-gx)
作者简介:
作者简介:姚佰成(1999-),男,硕士研究生,E-mail:ybc1234562022@163.com;通信作者:赵国勇(1976-),男,博士,教授,博导,E-mail:zgy709@126.com
参考文献:

[1]郭晓心. 青岛宏达:深耕行业 行稳致远[J]. 锻造与冲压,2021,(15):42-45.


 

Guo X X. Qingdao Hongda:Focus on metal forming industry and go forward [J]. Forging & Metalforming, 2021, (15):42-45.

 

[2]朱元胜,栾翼展,朱冠宇. 万吨电动螺旋压力机的研究及应用[J]. 锻压装备与制造技术,2014,49(1):37-39.

 

Zhu Y S, Luan Y Z, Zhu G Y. Research and application of electric screw press with 10000 tons [J]. China Metalforming Equipment & Manufacturing Technology, 2014, 49(1):37-39.

 

[3]徐双,赵至友,赵国勇,等. 重型电动数控螺旋压力机结构设计与有限元分析[J]. 锻压技术,2022,47(6):193-198.

 

Xu S, Zhao Z Y, Zhao G Y, et al. Structural design and finite element analysis of heavy duty electric CNC screw press[J]. Forging & Stamping Technology, 2022, 47(6):193-198.

 

[4]魏凤凯,黄慧,单本军,等. 双点机械压力机机身有限元分析及优化[J]. 锻压装备与制造技术,2020,55(3):26-30.

 

Wei F K, Huang H, Shan B J, et al. Finite element analysis and optimization of frame for the double-point mechanical press [J]. China Metalforming Equipment & Manufacturing Technology, 2020, 55(3):26-30.

 

[5]王俊,刘祥,庞秋. 伺服机械压力机机身结构优化设计分析[J]. 精密成形工程,2022,14(7):136-142.

 

Wang J, Liu X, Pang Q. Optimization design and analysis of servo mechanical press frame structure [J]. Journal of Netshape Forming Engineering, 2022, 14(7):136-142.

 

[6]陈聪. 高速压力机机构优化设计及轻量化研究[D]. 大连:大连理工大学,2021. 

 

Chen C. Optimization Design of Mechanism and Frame Structure of High-speed Press [D]. Dalian: Dalian University of Technology, 2021.

 

[7]牛军燕,唐永涛,李正辉,等. 基于ANSYS的带式输送机机架轻量化改进研究[J]. 煤矿机械,2021,42(9):126-128. 

 

Niu J Y, Tang Y T, Li Z H, et al. Research on lightweight improvement of belt conveyor frame based on ANSYS[J]. Coal Mine Machinery, 2021, 42(9):126-128.

 

[8]徐双,赵至友,赵国勇,等. 基于多项式拟合算法的重型电动数控螺旋压力机机身的轻量化[J]. 锻压技术,2022,47(12):154-160.

 

Xu S, Zhao Z Y, Zhao G Y, et al. Lightweighting of heavy-duty electric CNC screw press body based on polynomial fitting algorithm[J]. Forging & Stamping Technology, 2022, 47(12):154-160.

 

[9]Zhao X H, Liu Y X, Hua L, et al. Finite element analysis and topology optimization of a 12000 kN fine blanking press frame[J]. Structural and Multidisciplinary Optimization, 2016, 54(2):375-389.

 

[10]张雷,赵宏科,赵志鹏,等. 175 MN精密模锻压机集成建模分析技术[J]. 机械设计,2018,35(S1):418-420.

 

Zhang L, Zhao H K, Zhao Z P, et al. 175 MN of precision die forging press integration modeling analysis technology [J]. Journal of Machine Design, 2018, 35(S1):418-420.

 

[11]周党兰,徐孟诚,谈扬,等. 基于Workbench的机械压力机上横梁有限元分析及优化[J]. 锻压装备与制造技术,2023,58(1):21-24.

 

Zhou D L, Xu M C, Tan Y, et al. Finite element analysis and optimization of upper beam of mechanical press based on Workbench[J]. China Metalforming Equipment & Manufacturing Technology, 2023, 58(1):21-24.

 

[12]杨勇,崔陈晨,解培玉,等. 晶硅磨床关键零部件仿真分析与拓扑优化[J]. 精密制造与自动化,2021,227(3):7-10,21.

 

Yang Y, Cui C C, Xie P Y, et al. Simulation analysis and topology optimization of key parts of crystalline silicon grinder [J]. Precise Manufacturing & Automation, 2021, 227(3):7-10,21.

 

[13]谭群燕,沈铖,丁明明,等. 基于最优拓扑概念构型的压力机机身精度优化[J]. 锻压技术,2023,48(4):186-192.

 

Tan Q Y, Shen C, Ding M M, et al. Precision optimization on press body based on optimal topological conceptual configuration [J]. Forging & Stamping Technology, 2023, 48(4):186-192.

 

[14]张瑞,赵婷婷,罗功波. 伺服直驱型电动螺旋压力机的综合刚度分析[J]. 现代制造工程,2017,(2):142-148.

 

Zhang R, Zhao T T, Luo G B. The analysis of the synthetical stiffness on the servo direct drive electric screw press [J]. Modern Manufacturing Engineering, 2017,(2):142-148.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9