网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
副车架管梁正向设计和逆向重构方法研究
英文标题:Research on forward design and reverse reconstruction methods for subframe tubular beams
作者:李欢1 李春雨1 刘宁2 于飞3 余振龙1 马骏2 
单位:1.一汽奔腾轿车有限公司 2.长春职业技术学院 机电学院   3.富奥威泰克汽车底盘系统有限公司 
关键词:副车架 管梁成形 正向设计 逆向重构 尺寸精度 
分类号:TG306
出版年,卷(期):页码:2024,49(4):104-111
摘要:

 为解决管梁成形尺寸精度问题,针对某副车架应用的成形管梁,提出一种正向设计和逆向重构的设计方法。应用成形管梁正向结构设计技术,完成前横梁初始结构设计;利用成形数值仿真技术评估了前横梁的尺寸精度,其贴模率为88.8%,最大尺寸偏差为3.20 mm;基于前横梁成形仿真结果模型,对前横梁及与其焊接搭接支架进行逆向重构;依据逆向重构数据完成了前横梁及副车架总成的样件试制,经实物检测前横梁最大尺寸偏差从初始结构的3.20 mm已降低至了逆向重构后的1.02 mm;应用成形管梁的副车架总成最终通过了台架试验150%耐久性考核。综上所述,通过正向设计和逆向重构的设计方法可有效提升管梁成形的尺寸精度,为主机厂开发成形管梁提供了一定的技术参考。

 To solve the problem of dimensional accuracy in tubular beams forming, for the formed tubular beams applied to a certain subframe, a design method of forward design and reverse reconstruction was proposed.The initial structural design of front crossbeam was completed by applying the forward structural design technology of formed tubular beams. Then, the dimensional accuracy of front crossbeam was evaluated by forming numerical simulation technology with a die-fitting rate of 88.8% and a maximum dimensional deviation of 3.20 mm. Furthermore, based on the simulation result model of front crossbeam, the reverse reconstruction of front crossbeam and its welded overlap bracket was performed, and based on the reverse reconstruction data, the prototype production of front crossbeam and subframe assembly was completed. After physical inspection, the maximum dimensional deviation of front crossbeam reduced from the initial structure of 3.20 mm to 1.02 mm after reverse reconstruction, and the subframe assembly using formed tubular beams ultimately passed the 150% durability assessment of bench test. The result shows that the design method of forward design and reverse reconstruction can effectively improve the dimensional accuracy of tubular beam forming, providing a certain technical reference for the development of formed tubular beams.

基金项目:
2023年度吉林省高校优秀青年科研创新人才储备库项目;2024年度吉林省科技厅“科创专员(科创副总)”项目;2024年度吉林省教育厅科学研究项目(JJKH20241782KJ);2022年度吉林省成人教育协会“十四五”成人继续教育科研规划课题(2022CJY140)
作者简介:
作者简介:李欢(1985-),男,硕士,高级工程师 E-mail:316660026@qq.com 通信作者:刘宁(1986-),男,硕士,讲师 E-mail:4103677@qq.com
参考文献:

 [1]杨银,闫晓东,王哲,等. 铝合金矩形管绕弯件尺寸精度的试验研究[J].材料科学与工艺,2014,22 (1): 88-92. 


 

Yang Y,Yan X D,Wang Z,et al. Experimental research on geometric accuracy of bending parts for aluminum rectangular in rotarydraw bending[J]. Materials Science and Technology, 2014,22 (1): 88-92. 

 

[2]崔晓磊,韩聪,苑世剑.加载条件对内高压成形管件尺寸精度的影响[J].材料科学与工艺,2020,28 (3): 150-156. 

 

Cui X L,Han C,Yuan S J. Effect of loading conditions on dimension accuracy of hydroformed tubular parts [J]. Materials Science and Technology,2020,28 (3): 150-156.

 

[3]殷博闻,樊黎霞,杨晨,等. 身管精锻径向回弹与尺寸精度研究[J]. 兵器装备工程学报,2021,42 (1): 78-84. 

 

Yin B W,Fan L X,Yang C,et al. Radial springback and dimensional accuracy researchof barrel in precision forgin[J]. Journal of Ordnance Equipment Engineering, 2021,42 (1): 78-84. 

 

[4]Liao Y, Li F, Li Z, et al. Lightweight design of aluminum rear subframe in conceptual design stage[J]. Automotive Engineering, 2020, 42(12): 1737-1743.

 

[5]Chang J W. A study on dimensional change after heat treatment and optimal chemical composition of steels with 1200 MPa tensile strength for automotive subframe[J]. Journal of the Korean Society for Heat Treatment, 2020,33(3):107-116.

 

[6]苏海波,邓将华.异形截面副车架液压成形工艺研究及过程优化[J].塑性工程学报,2019,26 (5): 99-104. 

 

Su H B,Deng J H. Hydroforming study and process optimization of subframe with special section [J]. Journal of Plasticity Engineering,2019,26 (5): 99-104.

 

[7]王永刚.基于 ANSYS 副车架单根钢管内高压成形数值模拟[J]. 铸造技术,2017,38 (1): 215-217. 

 

Wang Y G. Numerical simulation of inside high pressure forming for subframe of single tubular based on ANSYS[J]. Foundry Technology,2017,38 (1): 215-217.

 

[8]刘晓晶,杨然,冯章超,等.汽车前副车架内高压成形工艺研究[J]. 哈尔滨理工大学学报,2018,23 (2): 129-133. 

 

Liu X J,Yang R,Feng Z C,et al. Research on hydroforming for automobile front subframe [J]. Journal of Harbin University of Science and Technology,2018,23 (2): 129-133.

 

[9]夏益新,王娜,陈新平,等.热冲压和液压成形技术在宝钢汽车轻量化服务中的应用及发展趋势[J].精密成形工程, 2017,9 (6): 104-110. 

 

Xia Y X,Wang N,Chen X P,et al. Application and development trend of lightweight technology for vehicle with hot stamping and hydroforming in Baosteel[J]. Journal of Netshape Forming Engineering,2017,9 (6): 104-110.

 

[10]熊雪英,王玉明,彭强. 宝钢先进成形制造成本模型和技术路线[J].塑性工程学报,2016,23 (3):103-107. 

 

Xiong X Y,Wang Y M,Peng Q.Study on manufacturing cost model for advanced forming and technical route for Baosteel[J]. Journal of Plasticity Engineering,2016,23 (3): 103-107.

 

[11]陈建军. 内高压成形工艺及其在汽车轻量化中的应用[J].汽车工程, 2009, 31(10): 980-985. 

 

Chen J J. Tubular hydroforming technology and its appliccation to vehicle lightweighting[J]. Automotive Engineering, 2009, 31(10): 980-985.

 

[12]艾丽昆,曲世明.空心双拐曲轴内高压成形加载路径优化的研究[J].机床与液压,2019,47 (2): 32-36. 

 

Ai L K,Qu S M.Research on optimization of internal high pressure forming loading path for hollow double throw crankshaft[J]. Machine Tool & Hydraulics,2019,47 (2): 32-36. 

 

[13]苑世剑.现代液压成形技术[M].2版. 北京: 国防工业出版社,2016. 

 

Yuan S J. Modern Hydroforming Technology [M]. 2nd Edition. Beijing: National Defense Industry Press,2016. 

 

[14]苑世剑,刘伟,王国峰,等.轻合金复杂薄壁构件流体压力成形技术新进展[J].上海航天,2019,36 (2): 31-37. 

 

Yuan S J,Liu W,Wang G F,et al. Advances in fluid pressure forming of complex light metal thinwalled components[J]. Aerospace Shanghai,2019,36 (2): 31-37.

 
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9