网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
7075铝合金温成形过程中摩擦规律研究及有限元仿真分析
英文标题:Friction law study and finite element simulation analysis on 7075 aluminum alloy during warm forming process
作者:朱云飞1  夏建生1 2 窦沙沙1  朱少华1  钱海旭1  朱春雨1 杨子润1 
单位:1.盐城工学院 机械优集学院 2.燕山大学 机械工程学院 
关键词:7075铝合金 温成形 摩擦 表面形貌 变摩擦因数 
分类号:TG155.5
出版年,卷(期):页码:2024,49(4):194-201
摘要:

 采用自主设计的高温摩擦试验机,研究了7075铝合金在边界润滑条件下的摩擦规律,建立不同温度下的变摩擦因数模型,并分析了各温度下的摩擦形貌,通过Abaqus有限元仿真和实际冲压验证变摩擦因数模型的准确性。研究结果表明:在边界润滑条件下,试验温度从100 ℃升高至300 ℃时,摩擦因数随着试验温度的增大而升高;在100200 ℃时,摩擦因数相对稳定;在200300 ℃时,摩擦因数随着滑动时间的增加,先增大后减小然后趋于稳定;在300 ℃时,7075铝合金表面犁沟的磨损效果显著;当采用变摩擦因数模型时,铝合金的模拟成形效果更能接近实际的成形效果,有效提高了软件的模拟精度。

 The friction laws of 7075 aluminum alloy under boundary lubrication conditions was studied by the self-designed high temperature friction testing machine, and the variable friction factor model at different temperatures was established. Then, the friction morphology at different temperatures was analyzed, and the accuracy of the variable friction factor model was verified by Abaqus finite element simulation and actual stamping. The research results show that when the test temperature increased from 100 ℃ to 300 ℃ under the boundary lubrication condition, the friction factor increases with the increasing of test temperature. At 100-200 ℃, the friction factor is relatively stable. At 200-300 ℃, the friction factor increases first, then decreases and then becomes stable with the increasing of sliding time. The furrow wear effect on 7075 aluminum alloy  surface is obvious at 300 ℃. When the variable friction factor model is used, the simulated forming effect of aluminum alloy is closer to the actual forming effect, and the simulation accuracy of software is improved effectively.

基金项目:
国家自然科学基金资助项目(51505408);江苏省产学研前瞻性联合研究项目(BY2022174)
作者简介:
作者简介:朱云飞(1998-),男,硕士研究生 E-mail:1970770483@qq.com 通信作者:夏建生(1980-),男,博士,教授 E-mail:Xiajiansheng@163.com
参考文献:

 [1]赵雨. 汽车轻量化材料及制造工艺分析[J]. 内燃机与配件, 2021(16):44-45.


 


Zhao Y. Analysis of automotive lightweight materials and manufacturing processes[J]. Internal Combustion Engine & Parts, 2021(16): 44-45.


 


[2]陈坤, 蔡林, 高丰, . 新能源汽车轻量化途径及其评价[J]. 时代汽车, 2021(11):112-113.


 


Chen K, Cai L, Gao F, et al. Lightweighting approaches and evaluation for new energy vehicles[J]. Auto Time, 2021, (11): 112-113.


 


[3]Zhang J X, Fan J X, Liu Y T, et al. Superplasticity of 6016 aluminum alloy at elevated temperatures[J]. Rare Metals, 2015,34(6):387-394.


 


[4]Liu Y, Zhu B, Wang K, et al. Friction behaviors of 6061 aluminum alloy sheets in hot stamping under dry and lubricated conditions based on hot strip drawing test[J]. Tribology International, 2020,151:106504.


[5]Liu Z Y, Xiong B Q, Li X W, et al. Effect of friction factor on deep drawing of 6A16 aluminum alloy for automobile body[J]. Journal of Wuhan University of Technology: Materials Science Edition, 2020,35(1):208-214.


 


[6]吴佳松, 蒋怡涵, 王武荣, . 7075铝合金板材热冲压成形中的高温摩擦[J]. 工程科学学报, 2020,42(12):1631-1638.


 


Wu J S, Jiang Y H, Wang W R, et al. Hightemperature friction in hot stamping forming of 7075 aluminum alloy sheets[J]. Chinese Journal of Engineering, 2020, 42(12): 1631-1638.


 


[7]Dou S S, Xia J S. Analysis of sheet metal forming (Stamping process): A study of the variable friction factor on 5052 aluminum alloy[J]. Metals, 2019,9(8):853.


 


[8]Xia J S, Zhao J, Dou S S. Friction characteristics analysis of symmetric aluminum alloy parts in warm forming process[J]. Symmetry, 2022,14(1):166.


 


[9]郭怡晖,万鑫铭,赵岩,.基于变摩擦系数的铝合金覆盖件冲压成形模拟[J].塑性工程学报,2015,22(5):39-4462.


 


Guo Y H, Wan X M, Zhao Y, et al. Simulation of stamping forming for aluminum alloy cover based on variable friction coefficient[J]. Journal of Plasticity Engineering, 2015, 22(5): 39-4462.


 


[10]聂昕, 谭广, 乔晓勇. 基于热-力耦合和变摩擦因数的高强钢冷冲压成形性[J]. 中国机械工程, 2018,29(16):1996-2002.


 


Nie X, Tan G, Qiao X Y. Cold stamping formability of highstrength steel based on thermomechanical coupling and variable friction coefficient[J]. China Mechanical Engineering, 2018, 29(16): 1996-2002.


 


[11]方雅,户燕会,任燕,等.汽车用6061铝型板温冲压减薄预测模型及实验验证[J].锻压技术,2023,48(1):79-83201.


 


Fang Y, Hu Y H, Ren Y, et al. Prediction model and experimental verification of thinning in warm stamping of 6061 aluminum sheet for automobiles[J]. Forging & Stamping Technology, 2023, 48(1): 79-83201.


 


[12]刘镕滔,夏建生,赵军,等.6061铝合金脉冲电流辅助热冲压下的摩擦特性[J].锻压技术,2023,48(6):191-198.


 


Liu R T, Xia J S, Zhao J et al. Friction characteristics of 6061 aluminum alloy in pulsed currentassisted warm stamping[J]. Forging & Stamping Technology, 2023, 48(6): 191-198.


 


[13]Gu R Y, Liu Q, Chen S C, et al. Study on hightemperature mechanical properties and forming limit diagram of 7075 aluminum alloy sheet in hot stamping[J]. Journal of Materials Engineering and Performance, 2019,28(12):7259-7272.


 


[14]Yang X, Hu Y R, Zhang L M, et al. Experimental and modelling study of interaction between friction and galling under contact load change conditions[J]. Friction, 2022,10(3):454-472. 

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9